Cho x-y=7. Tính giá trị của biểu thức: \(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
cho \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức\(A=\dfrac{-2x+y+5z}{2x-3x-6z}\)với x,y,z\(\ne\)0 và 2x-3y-6z\(\ne\)0
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)
Thay (1) vào A , ta được
\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)
\(\Rightarrow A=\dfrac{16k}{-5k}\)
\(\Rightarrow A=\dfrac{16}{5}\)
Vậy \(A=\dfrac{16}{5}\)
\(cho\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức của A\(=\dfrac{-2x+y+5z}{2x-3y-6z}\)(với x,y,z\(\ne0\)và a+b+c=0)
\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |
cho x-y =7. Tính giá trị biểu thức B=\(\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}\)
Cho x-y=7.Tính giá trị biểu thức \(B=\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}.\)
Cho x-y = 7
Tính giá trị biểu thức B = \(\frac{3x-7}{2x+y}-\frac{3y+7}{2y+x}\)
cho x,y > 0 và 2x+y ≥ 7 tính giá trị nhỏ nhất của biểu thức
P = \(x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{9}+9\)
Biết \(x-y=13\) và \(x\ne6,5\),\(y\ne6,5\). Tính giá trị biểu thức \(C=\dfrac{3x-y}{2x+13}-\dfrac{3y-x}{2y-13}\)
C = \(\dfrac{2x+\left(x-y\right)}{2x+13}+\dfrac{3y-x}{2y-\left(x-y\right)}\)
C = \(\dfrac{2x+13}{2x+13}+\dfrac{3y-x}{2y-x+y}\)
C = \(1+\dfrac{3y-x}{3y-x}\)
C = 1+1
C = 2