Tính nhanh tổng
1/6+1/12+1/20+1/30+1/42+1/56
tính nhanh. 1/6+1/12+1/20+1/30+1/42+1/56
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
= \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}\)
= \(\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+\frac{7-6}{6\times7}+\frac{8-7}{7\times8}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
= \(\frac{1}{2}-\frac{1}{8}\)
= \(\frac{3}{8}\)
k minh minh tra loi day du va nhanh nhat . ket ban voi minh nhe
Tính nhanh :A=1/6+1/12+1/20+1/30+1/42+1/56
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}\)
tính tổng S= 1/6+1/12+1/20+1/30+1/42+1/56
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
S=(1/2.3) +(1/3.4) + (1/4.5) +...+1/7.8
S=1/2-1/3+1/3-1/4 +1/4-1/5+...+1/7-1/8
S=1/2-1/8
S=3/8
Tính nhanh: A=1/6+1/12+1/20+1/30+1/42+1/56
A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
=1/2-1/8=3/8
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)\(+\frac{1}{7}-\frac{1}{8}\)
=\(\left(\frac{1}{2}-\frac{1}{8}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{7}-\frac{1}{7}\right)\)
\(=\left(\frac{1}{2}-\frac{1}{8}\right)+0+...+0\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}\)
Tính nhanh:
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 -1/4 + 1/4 - 1/5 + 1/5 - 1/6 +1/6 - 1/7 + 1/7 - 1/8
= 1/2 - 1/8
= 3/8
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
=1/2-1/3+1/4-1/5+1/5-1/6+1/7-1/8
=1/2-1/8
=4/8-1/8
=3/8
A=1/2.3+1/3.4+...+1/7.8
A=1/2-1/3+1/3-1/4+...+1/7-1/8
A=1/2-1/8
A=3/8
Tính tổng sau bằng cách nhanh nhất
1/2+1/6+1/12+1/20+1/30+1/42+1/56
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{56}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{7.8}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=1-\frac{1}{8}\)
\(\Rightarrow A=\frac{7}{8}\)
Tính nhanh tổng sau : 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
A=1/2+ 5/6 + 11/12 + 19/20 + 29 30 + 41/42 + 55/56 + 71/72 + 89/90
tính nhanh 1/6 cộng 1/12 cộng 1/20 cộng 1/30 cộng 1/42 cộng 1/56
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{5.4}+\frac{6-5}{5.6}+\frac{7-6}{7.6}+\frac{8-7}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{3}{8}\)
Tính tổng sau bằng cách nhanh nhất.
a) 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
b) 17/9 + 19/3 + 14/6 + 7/13 + 10/6 + 1/9
= 1/1x2+1/2x3+...+1/7x8
= 1-1/2+1/2-...-1/8
= 1-1/8
=7/8
a/ \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}=\)
= 1-1/8 = 7/8
b/ = (17/9+1/9)+(19/13+7/13)+(14/6+10/6) = 18/9 + 26/13 + 24/6 = 2+2+4 = 8
\(a)\) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\)\(1-\frac{1}{8}\)
\(=\)\(\frac{7}{8}\)
Áp dụng công thức \(\frac{a}{b\left(b+a\right)}=\frac{1}{b}-\frac{1}{b+a}\) \(\left(a,b>0\right)\) nhé
Chúc bạn học tốt ~