Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dân Chơi Đất Bắc=))))
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:15

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:06

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 2 2022 lúc 12:09

2.

a. Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)

Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương

b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)

Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
28 tháng 1 2021 lúc 22:08

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

Araku Ryn
Xem chi tiết
An Lâm Bảo
28 tháng 8 2021 lúc 9:32

hello

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 13:13

\(m^2x-2m+2mx+2-3x=0\)

\(\Leftrightarrow\left(m^2+2m-3\right)x=2\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)x=2\left(m-1\right)\)

- Với \(m=1\) pt có vô số nghiệm (ktm)

- Với \(m\ne1\Rightarrow x=\dfrac{2}{m+3}>0\Rightarrow m>-3\)

Vậy để pt có nghiệm dương duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\ne1\end{matrix}\right.\)

giải pt bậc 3 trở lên fr...
Xem chi tiết
Quỳnh Nguyễn
15 tháng 8 2018 lúc 16:06

đây là toán lớp 1 hả

maruko chan
15 tháng 8 2018 lúc 16:09

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

giải pt bậc 3 trở lên fr...
15 tháng 8 2018 lúc 16:11

mấy bài này học từ mẫu giáo bé nhé , nhưng ở olm ko có toán lp mẫu giáo nên chúa để lp1 có vấn đề gì à

mai a
Xem chi tiết
Nguyễn Thị Hoàng Yến
Xem chi tiết
khong có
Xem chi tiết
Trinh Đặng Phương
Xem chi tiết