tìm gtln của biểu thức: E= -x^4-10x^2-6x^3-6x+15
Tìm GTLN của biểu thức :
\(A=x^4-6x^3+9x^2+6x+2021\)
1:Tìm gtnn của biểu thức
A= x2-6x+11
B=x2-20x+101
C=x2-4xy +5y2+10x -22y+28
2:tìm gtln
D=4x-x2+3
E=-x2+6x-11
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
\(D=4x-x^2+3\)
\(-D=x^2-4x-3\)
\(-D=\left(x^2-4x+4\right)-7\)
\(-D=\left(x-2\right)^2-7\)
Mà \(\left(x-2\right)^2\ge0\)
\(\Rightarrow-D\ge-7\)
\(\Leftrightarrow D\le7\)
Dấu "=" xảy ra khi : \(x-2=0\Leftrightarrow x=2\)
Vậy \(D_{Max}=7\Leftrightarrow x=2\)
\(E=-x^2+6x-11\)
\(-E=x^2-6x+11\)
\(-E=\left(x^2-6x+9\right)+2\)
\(-E=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow-E\ge2\)
\(\Leftrightarrow E\le-2\)
Dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(E_{Max}=-2\Leftrightarrow x=3\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
nốt bài 58,59
58b,(2x^3-5x^2+6x-15):(2x-5)
c,(x^4-x-14):(x-2)
59;Tìm GTLN (hoặc GTNN )của các biểu thức sau:a,A=x^2-6x+11 b,B=2x^2+10x-1 c;C=5x-x^2
Tìm GTLN hoặc GTLN của biểu thức:
a)A=4x2-8x+15
b)B=-x2-8x+5
c)C=-x2+6x+1
d)D=-32+12x+11
e)E=2x2+20x-43
a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11
Vì (2x-2)2luôn lớn hơn hoặc bằng 0
=>A>hoặc =0+11 hay a>hoặc =11
vậy GTNN của A là 11 khi x=1
tìm gtln của biểu thức √x-1 + √16-6x +√6x-3
tìm x để biểu thức A= (6x-3)/ (6x^3-11x^2+10x-3)nguyên
Ta có:
\(A=\frac{6x-3}{6x^3-11x^2+10x-3}=\frac{3\left(2x-1\right)}{\left(2x-1\right)\left(3x^2-4x+3\right)}=\frac{3}{3x^2-4x+3}\) nhận giá trị nguyên khi \(\frac{3}{3x^2-4x+3}\) nhận giá trị nguyên.
Mà \(3x^2-4x+3=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\left(\frac{2}{\sqrt{3}}\right)^2+\frac{5}{3}=\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2+\frac{5}{3}\ge\frac{5}{3}\)
\(\Rightarrow\) \(0<\frac{3}{3x^2-4x+3}\le\frac{9}{5}\)
Do đó, giá trị nguyên của \(\frac{3}{3x^2-4x+3}\) là \(1\)
\(\frac{3}{3x^2-4x+3}=1\) \(\Rightarrow\) \(3x^2-4x+3=3\)
\(\Leftrightarrow\) \(3x^2-4x=0\)
\(\Leftrightarrow\) \(x\left(3x-4\right)=0\)
\(\Leftrightarrow\) \(x_1=0\) \(;\) \(x_2=\frac{4}{3}\)
Khi đó, \(A_1=A_2=1\)
Vậy, với \(x\in\left\{0;\frac{4}{3}\right\}\) thì giá trị nguyên của \(A\) khi đó là \(1\)
Giúp mình bài này với:
Tìm GTNN của biểu thức \(x^4-6x^3+10x^2-6x+9\)