Cho \(\dfrac{x}{y}=\dfrac{z}{t}=\dfrac{a}{b}.\)Hãy tính A = \(\dfrac{x-3z+2a}{y-3t+2b}\).
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
1.
\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
TH2: \(a+b+c\ne0\)
\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)
Bài 2 đề sai
Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)
Bài 2:
\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)
Với \(x+y+z=0\)
\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)
Với \(x+y+z\ne0\)
\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cho x/y=z/t=a/b ,Hãy tính A=x-3z+2a/y-3t+2b
Cho \(\dfrac{2y+2z-x}{a}=\dfrac{2z+2x-y}{b}=\dfrac{2z+2y-z}{c}\)
CMR: \(\dfrac{x}{2b+2c-a}=\dfrac{y}{2c-2a-b}=\dfrac{z}{2a-2b-c}\)
Bài 1: Tìm x, y, z biết: \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\) và x + y + z =18
Bài 2: Cho dãy tỉ số bằng nhau: \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)
Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Bài 1:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=8\end{matrix}\right.\)
Vậy \(x=4;y=6;z=8\)
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}=\dfrac{2abz-3acy+6bcx-2baz+3cay-6bcx}{a^2+4b^2+9c^2}\)
\(\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\Rightarrow2bz=3cy\Rightarrow\dfrac{y}{2b}=\dfrac{z}{3c}\\3cx-az=0\Rightarrow3cx=az\Rightarrow\dfrac{x}{a}=\dfrac{z}{3c}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\left(đpcm\right)\)
Vậy \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Cho \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
C/m rằng: \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\) với các mẫu số ≠ 0
Áp dụng t/c của DTSBN , ta có :
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+4a+2b-2a-2c+4a-4b+c}\\ =\dfrac{x+2y+z}{\left(a+4a+4a\right)+\left(2b+2b-4b\right)+\left(c-2c+c\right)}\\ =\dfrac{x+2y+z}{9a}\left(1\right)\)
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{2x+y-z}{2\left(a+2b+c\right)+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{\left(2a+2a-4a\right)+\left(4b+b+4b\right)+\left(2c-c+c\right)}\\ =\dfrac{2x+y-z}{9b}\left(2\right)\)
+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)++4a-4b+c}\\ =\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\\ =\dfrac{4x-4y+z}{\left(4a-8a+4a\right)+\left(8b-4b-4b\right)+\left(4c+4c+c\right)}\\ =\dfrac{4x-4y+z}{9c}\left(3\right)\)
Từ (1);(2) và (3)
\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2a+y-z}{9b}=\dfrac{4x-4y+z}{9c}\\ \Rightarrow\dfrac{x+2y+z}{9a}\cdot9=\dfrac{2a+y-z}{9b}\cdot9=\dfrac{4x-4y+z}{9c}\cdot9\\ \Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2a+y-z}{b}=\dfrac{4x-4y+z}{c}\\ \Rightarrow\dfrac{a}{a+2y+z}=\dfrac{b}{2a+y-z}=\dfrac{c}{4x-4y+z}\left(đpcm\right)\)
Đặt \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k\left(a+2b+c\right)\\y=k\left(2a+b-c\right)\\z=k\left(4a-4b+c\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{a}{k\left(a+2b+c\right)+2k\left(2a+b-c\right)+k\left(4a-4b+c\right)}=\dfrac{a}{k.9a}=\dfrac{1}{9k}\)
Tượng tự:
\(\dfrac{b}{2x+y-z}=\dfrac{b}{9bk}=\dfrac{1}{9k}\) ; \(\dfrac{c}{4x-4y+z}=\dfrac{c}{9k.c}=\dfrac{1}{9k}\)
\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
Cho\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
C/m rằng:\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\) với các mẫu số ≠ 0
Bài 1:
a) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{a^2+ac}{c^2-ac}=\dfrac{b^2+bd}{d^2-bd}\)
b) Cho a, b, c > 0 và dãy tỉ số:\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính: P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
c) Cho x,y,z,t \(\in\) N. CMR:
M= \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{z+t+x}\) có giá trị không phải là số tự nhiên
b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)