M có là một số chính phương không nếu:
M = 1 + 3 + 5 +. . .+ (2n - 1) (Với n \(\in\) N, \(n\ne0\))
Help me do my homework !
M có là một số chính phương không nếu : M = 1 + 3 + 5 + ... + ( 2n - 1 ) Với ( n \(\in N,n\ne0\)
Can you help me ?
i can't help you
sorry because i in grade 5
Ta có: M = 1+3+5+....+(2n-1)
=> M=[(1+2n-1) :2 + 1 ].(2n-1+1)/2
=>\(M=\frac{\left(n+1\right).2n}{2}=\left(n+1\right)n\)
Vì M là tích của 2 số tự niên liên tiếp
=> M ko thể là số chính phương
M có là một số chính phương hay không. Nếu: M = 1 + 3 + 5 + ... + (2 n -1) ( Với \(n\in N,n\ne0\))
\(M=1+3+5+........+\left(2n-1\right)\left(n\inℕ^∗\right)\)
Có: (2n-1-1):2+1=n số hạng
\(\Rightarrow M=\left(1+2n-1\right).n:2=2n.n:2=2n^2:2=n^2\)
Mà \(n\inℕ^∗\)
=>M là số chính phương
Vậy M là số chính phương
Chúc bn học tốt
M có phải là số chính phương không, biết:
M = 1 + 3 + 5 + ... + ( 2n - 1 ) (Với\(\forall n\inℕ,n\ne0\))
M=1+3+5....+(2n-1)
Số số hạng (2n-1-1)/2+1=n số hạng
Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương
M có là một số chính phương không nếu
M = 1+3+5+....+ (2n-1) ( với n \(\in\) N , n\(\ne\) 0)
Ta có: SSH = (2n - 1 - 1) : 2 + 1 = n (số)
\(\Rightarrow M=\frac{\left(2n-1+1\right)n}{2}=\frac{2n^2}{2}=n^2\)
Vậy M là 1 số chính phương
M có phải là số chính phương không nếu: M=1+3+5+....+(2n-1) (với n thuộc N, n khác 0
M có là một số chính phương không nếu :
M=1+3+5+...+(2n-1) ( Với n thuộc N , n khác 0)
Giúp mình nha!
Số số hạng của M là : [(2n-1)-1]: 2+1=n^2
Tổng M là:(2n-1+1).n:2=n^2
=>M là số chính phương
M là một số chính phương không nếu :M=1+3+5+...+(2n-1) (Với n là số tự nhiên và n khác 0)
M có là 1 số chính phương không nếu:
M = 1 + 3 + 5 + ..... + ( 2n -1 ) ( Với n thuộc N, n khác 0 )
M=1+3+5+...+(2n-1)
=[(2n-1)+1]×n/2
=2n^2/2=n^2
=> M là số chính phương.
Trong tổng trên có số số hạng là :
( 2n - 1 - 1 ) : 2 + 1 = n ( số hạng )
=> M = ( 2n - 1 + 1 ) . n/2 = 2n.n/2 = n^2
=> M = số chính phương
Hok tốt ^^
M có là số chính phương không nếu :
M = 1 + 3 + 5 + ... + ( 2n - 1 ) ( Với \(n\in N;n\ne0\))
Số số hạng của tổng M là :
[(2n-1)-1] : 2+1
=(2n-2) :2+1
=2(n-1):2+1
=n-1+1
=n (số hạng)
=> M= (2n-1+1) n: 2
=> 2n.n:2
=>n.n=n^2
=> M là số chính phương