gjai gjup mk ngen mơg max pn nhk : 9x+2+9x-92.82=0
gjup mk gjai baj nay chút nha:
2^x+2 + 2^x+1 + 2^x = 224
\(2^x+2+2^x+1+2^x=224\)
\(\Leftrightarrow3\left(x^2\right)+3=224\)
\(\Leftrightarrow3\left(x^2+1\right)=224\)
\(\Leftrightarrow x^2+1=\frac{224}{3}\)
\(\Leftrightarrow x^2=\frac{221}{3}\)
\(\Leftrightarrow x=\sqrt{\frac{221}{3}}=\frac{\sqrt{663}}{3}\)
tong 3 so nguyen to la 1012. tim so nho nhat trong 3 so do....
please gjai gjup mk truoc 6 gio nhe.
tổng của 3 số nguyên tố là 3
=> có ít nhất 1 số nguyên tố là chẵn
=> số cần tìm là 2
Tinh chu vi va dien tich hinh thoi.biet duong cheo lon la 3 cm duong cheo be la bang 2/5 duong cheo lon,canh cua hinh thoi la 5/4 cm
m.n gjup mk gjai bai toan nay vs nhe............
\(9x^3+9x^2+\frac{20}{3}x+1=0\) Giai phương trình huhuuu giúp mk vớiii
Mọi người giúp mk bài này nha:
\(2x^4-9x^3+14x^2-9x+2=0\)
\(2x^4-9x^3+14x^2-9x+2=0\)
\(\Leftrightarrow2x^4-4x^3+2x^2-5x^3+10x^2-5x+2x^2-4x+2=0\)
\(\Leftrightarrow2x^2\left(x^2-2x+1\right)-5x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-5x+2\right)\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-4x+2\right)\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[x\left(2x-1\right)-2\left(2x-1\right)\right]\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)^2\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(2x^4-9x^3+14x^2-9x+2=0\)
\(\Leftrightarrow2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\)
\(\Leftrightarrow2x^3\cdot\left(x-1\right)-7x^2\cdot\left(x-1\right)+7x\cdot\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-7x^2+7x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left[2\left(x^3-1\right)-7x\cdot\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left[2\left(x-1\right)\cdot\left(x^2+x+1\right)-7x\cdot\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left[2\left(x^2+x+1\right)-7x\right]=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left(2x^2+2x+2-7x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left(2x^2-5x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left(2x^2-x-4x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left[x\cdot\left(2x-1\right)-2\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-1\right)\cdot\left(x-2\right)\cdot\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-2\right)\cdot\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\x-2=0\\2x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{1}{2};x_2=1;x_3=2\)
\(2x^4-9x^3+14x^2-9x+2=0\)
\(\Leftrightarrow2x^4-2x^3-7x^3+7x^2+7x^2-7x-2x+2=0\)
\(\Leftrightarrow\)\(2x^3\left(x-1\right)-7x^2\left(x-1\right)+7x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-7x^2+7x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-4x^2-3x^2+6x+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy ...................
gjai gjup minh:
a, n+2 chia het cho 3
b, 4n-5 chia het cho 13
c, 5n =1 chia het cho 7
d, 25n + 3 chia het cho 57
Dau bai la tim STN n nhe.
a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}
\(\Rightarrow\)n=1;4;7;10;13;16;19;....
b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}
\(\Rightarrow\)n=5;18;31;44;47;...
c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}
\(\Rightarrow\)n=3
d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}
\(\Rightarrow\)n=9
Cho x>0.
1. Tìm max \(B=x+\frac{4}{x^2}\)
2. Tìm max \(C=x^2+\frac{2}{x}\)
3. Tìm max D= \(9x^2+\frac{4}{3x}\)
Tất cả các biểu thức này đều ko tồn tại max mà chỉ tồn tại min
\(B=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}\ge3\sqrt[3]{\frac{4x^2}{4x^2}}=3\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{4}{x^2}\Leftrightarrow x=2\)
\(C=x^2+\frac{1}{x}+\frac{1}{x}\ge3\sqrt[3]{\frac{x^2}{x^2}}=3\)
Dấu "=" xảy ra khi \(x^2=\frac{1}{x}\Leftrightarrow x=1\)
\(D=9x^2+\frac{2}{3x}+\frac{2}{3x}\ge3\sqrt[3]{\frac{36x^2}{9x^2}}=3\sqrt[3]{4}\)
Dấu "=" xảy ra khi \(9x^2=\frac{2}{3x}\Leftrightarrow x=\frac{\sqrt[3]{2}}{3}\)
9x-9x+2x2= ?
ai t.i.c.k mk mk t.i.c.k lại