chung minh rang 1/2!+1/3!+1/4!+..................+1/100!<1
chung minh rang : 1 / 2 ^ 2 + 1 / 3 ^ 2 + 1 / 4 ^ 2 + . . . + 1 / 100 ^ 2 < 99 / 100
Hình như sai đề thì phải chứ mk làm ko đc !!!
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
chung minh rang 1/2!+2/3!+3/4!+....+99/100!<1
chung minh rang 1/3^2+1/4^2+1/5^2+...+1/100^2<1/2
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
đặt A= biểu thức trên
tao có
A<1/2.3+1/3.4+...+1/99.100
A<1/2-1/3+1/3-1/4+...+1/99-1/100
A<1/2-1/100<1/2
SUY RA A<1/2(DPCM)
chung minh rang 1/2+2/3+3/4+ ....+99/100<1
nhanh minh tick
Ta có : 1/2 = 0,5
2/3 = 0,666...
=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100
= 1,1,6666... + 3/4 + ... +99/100 > 1
=> 1/2 + 2/3 + ... + 99/100 > 1
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)
\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\le1\)
\(\Rightarrow1-\frac{1}{100}\le1\)
1/2 + 2/3 + 3/4 + ... + 99/100 < 1
= 2/2 - 1/2 + 3/3 - 1/3 + 4/4 - 1/4 + ... + 100/100 - 1/100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100 < 1 (đpcm)
chung minh rang 1-1/2^2-1/3^3-1/4^2-....-1/100^2>1/100
please,who can help me?
chung minh rang 1\2 mu 2+1\3 mu 2+1\4 mu2+...+1\100 mu 2 < 1
ai lam day du dau tien minh se k cho nha
minh can gap lam
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).
chung minh rang
1/3 + 2/3^2 + ... + 100/3^100<3/4
chung minh rang
1/3^2+1/4^2+...............+1/100^2<1/2
Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\) ( đpcm )
Chúc bạn học tốt ~
chung minh rang 1/3 -1 /3^2 + 3/3^3 -4/3^4+...+99/3^99-100/3^100 < 3/16