tính
P=\(\dfrac{5}{5.10}+\dfrac{5}{10.15}+\dfrac{5}{15.20}+...+\dfrac{5}{95.100}\)
Tính
B = 5/5.10 + 5/ 10.15 + 5/ 15.20 + ....... + 5/ 95.100
\(B=\frac{5}{5\cdot10}+\frac{5}{10\cdot15}+...+\frac{5}{95\cdot100}\)
\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(B=\frac{1}{5}-\frac{1}{100}\)
\(B=\frac{19}{100}\)
\(B=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(B=\frac{1}{5}-\frac{1}{100}\)
\(B=\frac{19}{100}\)
b=\(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
b=\(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{`1}{100}\)
b=\(\frac{1}{5}-\frac{1}{100}\)
b=\(\frac{19}{100}\)
hoc tot nha bn !
a, D= \(\left(2\dfrac{2}{15}.\dfrac{9}{17}.\dfrac{3}{32}\right):\left(-\dfrac{3}{17}\right)\)
b, \(\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-\dfrac{1}{11.15}-\dfrac{1}{15.19}-\dfrac{1}{19.23}-\dfrac{1}{23.27}\)
c, 1- \(\dfrac{1}{5.10}-\dfrac{1}{10.15}-\dfrac{1}{15.20}-.......-\dfrac{1}{95.100}\)
a) \(D=\left(2\dfrac{2}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\right)\div\left(-\dfrac{3}{17}\right)\)
\(D=\dfrac{32}{15}\times\dfrac{9}{17}\times\dfrac{3}{32}\times\dfrac{-17}{3}\)
\(D=\dfrac{-3}{5}\)
b) \(\dfrac{1}{2}-\dfrac{1}{3\times7}-\dfrac{1}{7\times11}-\dfrac{1}{11\times15}-\dfrac{1}{15\times19}-\dfrac{1}{19\times23}-\dfrac{1}{23\times27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+\dfrac{1}{15\times19}+\dfrac{1}{19\times23}+\dfrac{1}{23\times25}\right)\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+\dfrac{4}{11\times15}+\dfrac{4}{15\times19}+\dfrac{4}{19\times23}+\dfrac{4}{23\times27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\left[\dfrac{1}{4}\left(\dfrac{9-1}{27}\right)\right]\)
\(=\dfrac{1}{2}-\dfrac{1}{4}\times\dfrac{8}{27}\)
\(=\dfrac{1}{2}-\dfrac{2}{27}\)
\(=.....\)
Đó đến đây bn tự lm nốt. Câu c bn lm tương tự.
Mình cho bn dạng này, nếu bn chưa biết (để lm câu c)
\(\dfrac{x}{y\left(y+x\right)}=\dfrac{x}{y}-\dfrac{x}{y+x}\)
Chúc bn học tốt
Tính
1-1/5.10-1/10.15-1/15.20...-1/95.100
\(1-\frac{1}{5\cdot10}-\frac{1}{10\cdot15}-\frac{1}{15\cdot20}-...-\frac{1}{95\cdot100}\)
\(=1-\left(\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+...+\frac{1}{95\cdot100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)=1-\frac{19}{500}=\frac{481}{500}\)
Cho: \(M=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}+\dfrac{1}{20}\) ; \(N=\dfrac{5^2}{5.10}+\dfrac{5^2}{10.15}+...+\dfrac{5^2}{2000.2005}+\dfrac{5^2}{2005.2010}\)
a) Tính tổng N
b) So sánh M và N
Các bạn giải ra từng bước dùm mik nha
Thanks m.n
C = 1/5.10 + 1/10.15 + 1/15.20 +...+ 1/95.100
C=1/5.10+1/10.15+...+1/95.100
= 5/5.10+5/10.15+...+5/95.100
= 1/5-1/10+1/10-1/15+...+1/95-1/100
= 1/5-1/100
= 19/100
\(C=5\times\left(1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..+\frac{1}{95}-\frac{1}{100}\right)\)
\(C=5\times\left(1-\frac{1}{100}\right)\)
\(C=5\times\frac{99}{100}\)
\(C=\frac{99}{20}\)
C = \(\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{95.100}\)
= \(\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\right)\)
= \(\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)
= \(\frac{1}{5}.\frac{19}{100}=\frac{19}{500}\)
1. Chứng tỏ rằng:
a) \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
b) \(\dfrac{m}{a.\left(a+m\right)}=\dfrac{1}{a}-\dfrac{1}{a+m}\)
2. Tính
a) \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
b) \(\dfrac{5}{10.15}+\dfrac{5}{15.20}+...+\dfrac{5}{195.200}\)
c) \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{96.98}\)
2
a. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{2}-\dfrac{1}{100}\)
=\(\dfrac{49}{100}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-....-\frac{1}{95.100}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-.....-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
Đặt \(C=\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+....+\frac{1}{95.100}\)
\(\Rightarrow C=\frac{1}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+....+\frac{5}{95.100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+....+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)=\frac{1}{5}.\frac{19}{100}=\frac{19}{500}\)
\(\Rightarrow1-C=1-\frac{19}{500}=\frac{481}{500}\)
Chúc bạn học tốt
5/5.10+5/10.15+5/15.20+...+5/2015.2020(giup to vs)
=(5/5-5/10+5/10-5/15+.........+5/2015-5/2020)
=(1/5-1/10+1/10-1/20+.......+1/2015-1/2020)
=1/5-1/2020
=403/2020
ai tích mk mk vs
\(\frac{5}{5.10}+\frac{5}{10.15}+.............+\frac{5}{2015.2020}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..............+\frac{1}{2015}-\frac{1}{2020}\)
\(=\frac{1}{5}-\frac{1}{2020}\)
\(=\frac{403}{2020}\)
5/5.10+5/10.15+5/15.20+...+5/2015.2020
=5(1/5.10+1/10.15+1/15.20+...+1/2015.2020) khoang cach tu 5-10;10-15;...;2015-2020 la 5 suy ra
=5/5(1/5-1/10+1/10-1/15+1/15-1/20+...+1/2015-1/2020) ; (-1/5+1/5;-1/10+1/10;-1/15+1/15;-1/20+1/20;... bang 0)
=1(1/5-1/2020)=2015/10100=403/2020
Bài 1: \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
ta có B = 1- 1/5.10 - 1/10.15 -.......- 1/95 .100
=> 5B = 5 -( 5/5.10+5/10.15 +....+ 5/95.100
= > 5B = 5 - ( 1/5 -1/100 )
=> 5B= 481/100
=> B = 481/500