Tìm số tự nhiên n biết
2n^2+3n+7 chia het cho 2n+3
n^2+9n+9 chia het cho n-4
Tìm số tự nhiên n biết::
a) n + 13 chia het cho(n+1)
b) 2n + 15 chia het cho ( n+3)
c) 6n + 24 chia het cho ( 2n +3)
d) 2n+6 chia het cho ( 3n +1)
e) 12n + 8 chia het cho ( 3n-1)
g) n^2 + 4n - 7 chia het cho ( n-1)
Tìm số tự nhiên n biet
2n+3 chia het cho n-2
n+2 chia het cho n
3n+5 chia het cho n
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
Tìm số tự nhiên n biết 3n+1 chia het cho 11-2n
tim n thuoc N
a,n+2 chia het cho 3n+5
b,n2-2n+9 chia het cho n-2
c,3n+7 chia het cho n-2
a \(n+2⋮3n+5\)
\(\Rightarrow3\left(n+2\right)⋮3n+5\)
\(\Rightarrow3n+5+1⋮3n+5\)
\(\Rightarrow1⋮3n+5\)
\(\Rightarrow3n+5\in\left\{1,-1\right\}\)
\(\Rightarrow n=-2\)(loại)
c \(3n+7⋮n-2\)
\(\Rightarrow2\left(3n+7\right)⋮n-2\)
\(\Rightarrow6n+14⋮n-2\)
\(\Rightarrow3\left(n-2\right)+20⋮n-2\)
\(\Rightarrow20⋮n-2\)
\(\Rightarrow n-2\in\left\{20,1,10,2,5,4,-20,-1,-10,-2,-5,-4\right\}\)
...(như câu a)
Tìm số tự nhiên n để:
2n+7chia hết cho 3n-1
3n+1 chia het cho 11-2n
2n + 7 chia hết cho 3n - 1
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
Còn lại xét 4 trường hợp giống bài trên nha
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
chúc bn hok tốt @_@
giup minh bai nay nha!
tim so tu nhien n biet:
A, 3n + 7 chia het cho n+2
B, 6n +7 chia het cho 2n+1
C, 3n^3 n^2+4 chia het cho 3n+1
D, 3n^3 + 10n^2 - 5 chia het cho 3n+1
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
Tìm số nguyên n sao cho :
a)6n+5 chia het cho 3n-1
b)2n-1 chia hết cho n+1
c)9n-1 chia hết cho 9-n
a) \(\Rightarrow\left(6n+5\right)-2\left(3n-1\right)⋮3n-1\)
\(\Rightarrow\left(6n+5\right)-\left(6n-2\right)⋮3n-1\)
\(\Rightarrow6n+5-6n+2⋮3n-1\)
\(\Rightarrow7⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
ta có bảng sau :
3n-1 1 -1 7 -7
n L 0 L -2
mà \(n\in Z\)
\(\Rightarrow n\in\left(0;-2\right)\)
b) \(\Rightarrow\left(2n-1\right)-2\left(n+1\right)⋮n+1\)
\(\Rightarrow\left(2n-1\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n-1-2n-2⋮n+1\)
\(\Rightarrow-1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-1\right)=\left(1;-1\right)\)
ta có bảng sau
n+1 1 -1
n 0 -2
mà \(n\in Z\)
KL :\(n\in\left(0;-2\right)\)
c) \(\Rightarrow\left(9n-1\right)+9\left(9-n\right)⋮9-n\)
\(\Rightarrow\left(9n-1\right)+\left(81-9n\right)⋮9-n\)
\(\Rightarrow9n-1=81-9n⋮9-n\)
\(\Rightarrow80⋮9-n\)
\(\Rightarrow9-n\inƯ\left(80\right)=\left(1;-1;2;-2;4;-4;8;-8;10;-10;5;-5;20;-20;40;-40;80;-80\right)\)
ta có bảng sau :
9 - n 1 -1 2 -2 4 -4 5 -5 8 -8 10 -10 20 -20 40 -40 80 -80
n 8 10 7 11 5 13 4 14 1 17 -1 19 -11 29 -31 49 -71 89
Mà \(n\in Z\)
\(\Rightarrow n\in\left(8;10;7;11;5;13;4;14;1;17;-1;19;-11;29;-31;49;-71;89\right)\)
Tìm số tự nhiên n để 2n+1 chia het cho 16-3n