Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Tuấn Hưng
Xem chi tiết
hoangvukhanhchi
Xem chi tiết
sói nguyễn
22 tháng 10 2021 lúc 9:43

S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)

\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)

Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)

Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20

\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4

\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1

Nguyễn Thị Vương Nga
Xem chi tiết
Nguyễn Hà Lâm
12 tháng 1 2019 lúc 20:57

ko biết

Thu Nguyễn Thị
Xem chi tiết
Haf hfa nán
25 tháng 7 lúc 20:27

cho s=1+2+2^2+2^3+...+2^100 tìm x biết s+1=2^x~7

bincorin
Xem chi tiết
Akai Haruma
12 tháng 10 lúc 22:56

Lời giải:

$C=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{2013})$

$=40(1+3^4+....+3^{2013})\vdots 40$

----------------------------------

Lại có:
$C=(1+3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8+3^9)+....+(3^{2012}+3^{2013}+3^{2014}+3^{2015}+3^{2016})$

$=(1+3+3^2+3^3+3^4)+3^5(1+3+3^2+3^3+3^4)+....+3^{2012}(1+3+3^2+3^3+3^4)$

$=(1+3+3^2+3^3+3^4)(1+3^5+....+3^{2012})$

$=121(1+3^5+....+3^{2012})\vdots 121$

 

Nguyễn Duy Khánh
Xem chi tiết
Đỗ Nhật Anh
10 tháng 12 2023 lúc 10:43

.............

Lê Dung My
Xem chi tiết
quân hoàng
Xem chi tiết
Xem chi tiết