and
are positive integers such that
, where
is a prime number.
The number of pairs is
m and n are positive integers such that 10(m^2+1)=n^2+1\(\), where m^2+1 \(\) is a prime number. The number of pairs (m,n) is...
Các bạn giải chi tiết giúp mình với, mình cảm ơn nhiều ạ!!
Number 6 is written as sum of two positive integers in three different ways: $6=1+5=2+4=3+3.$ (order does NOT matter). That is, there are exactly three different pairs of positive integers that add to make six. How many pairs of positive integers that add to make 1000?
Number 6 is written as sum of two positive integers in three different ways: $6=1+5=2+4=3+3.$ (order does NOT matter). That is, there are exactly three different pairs of positive integers that add to make six. How many pairs of positive integers that add to make 1000?
Các bạn giải nhanh giùm mình nhé để mình con đi thi
đề là:Số 6 được viết bằng tổng của hai số nguyên dương theo ba cách khác nhau: $ 6 = 1 + 5 = 2 + 4 = 3 + 3. $ (thứ tự KHÔNG quan trọng). Nghĩa là, có chính xác ba cặp khác nhau của số nguyên dương mà thêm để bằng sáu. Có bao nhiêu cặp số nguyên dương cộng thêm bằng 1000?(ý là có mấy số cộng lại = 1000 )
à quên:Số 6 được viết bằng tổng của hai số nguyên dương theo ba cách khác nhau: $ 6 = 1 + 5 = 2 + 4 = 3 + 3. $ (thứ tự KHÔNG quan trọng). Đó là, có đúng ba cặp khác nhau của các số nguyên dương mà thêm để bằng sáu. Có bao nhiêu cặp số nguyên dương mà thêm để bằng 1000?
If p is a prime number such that there exist positive integers a and b such that \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) then p = ?
Dịch: Tìm số nguyên tố p sao cho tồn tại số nguyên dương a; b sao cho \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\)
Vì \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) => (a2 + b2).p = a2.b2 (*) => a2b2 chia hết cho p => a2 chia hết cho p hoặc b2 chia hết cho p
+) Nếu a2 chia hết cho p ; p là số nguyên tố => a chia hết cho p => a2 chia hết cho p2 => a2 = k.p2 ( k nguyên dương)
Thay vào (*) ta được (a2 + b2) . p = k.p2.b2 => a2 + b2 = kp.b2 => a2 + b2 chia hết cho p => b2 chia hết cho p
=> b chia hết cho p
+) Khi đó, đặt a = m.p; b = n.p . thay vào \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) ta được: \(\frac{1}{p}=\frac{1}{m^2p^2}+\frac{1}{n^2p^2}\)
=> \(\frac{1}{p}=\frac{1}{p^2}\left(\frac{1}{m^2}+\frac{1}{n^2}\right)\)=> \(\frac{1}{m^2}+\frac{1}{n^2}=p\)
+) Vì p là số nguyên tố nên p > 2 . mà a; b nguyên dương nên m; n nguyên dương => m; n > 1 => \(\frac{1}{m^2}+\frac{1}{n^2}\le1+1=2\)
=> p = 2 và \(\frac{1}{m^2}+\frac{1}{n^2}=2\) => m = n = 1
Vậy p = 2 và a = b = 2
Lời giải bằng tiếng việt hay anh đây ?
1 How many triples of integers (a,b,c) are there such that
?
2
2) Vì ABC và RTS là 2 tam giác đồng dạng nên:
\(\frac{AB}{RT}=\frac{BC}{TS}\Leftrightarrow\left(\frac{8}{4}\right)=\frac{x}{5}\Rightarrow x=10\)
a polindrome number is a positive integer that is the same when read forwards or backwards. the numbers 303 and 6996 are examples of palindromes numbers to the numbers of 5-digit palindrome number is
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is .......
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is ..
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Câu 1: Cho chia hết cho 9. giá trị là gì?
Câu 2: Có bao nhiêu phần tử của tập A chia hết cho 9?
Câu 3: A là một tập hợp các bội số của 12 ít hơn 12. Làm thế nào nhiều yếu tố không tập A có?
Câu 4: Tìm dư khi chia cho 3. Câu 5: Cho rằng 511 là tổng của hai số nguyên tố và,. giá trị là gì?
Câu 6: Cho rằng. Tìm giá trị của.
Câu 7: Cho rằng. không số A có bao nhiêu ước?
Câu 8: Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 9: Cho rằng. không số A có bao nhiêu ước?
Câu 10: Cho rằng. Một số có bao nhiêu ước?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
!!!!!!!!!!!