Cho tg ABC cân tại A kẻ AH_|_ BC tại H
C/m tg ABH= tg ACH
Vẽ trung tuyến BM. Gọi Glafgiao điểm của AH và BM. C/m G là trọng tâm của tg ABC
Từ H kẻ HD//AC c/m 3 điểm C,G,D thẳng hàng
1.Cho tg ABC cân tại A kẻ AH_|_ BC tại H
C/m tg ABH= tg ACH
Vẽ trung tuyến BM. Gọi Glafgiao điểm của AH và BM. C/m G là trọng tâm của tg ABC
Từ H kẻ HD//AC c/m 3 điểm C,G,D thẳng hàng
2. cho tg abc vuông tại a.đường p/g be.kẻ ek_|_ bc.gọi h à giao điểm của ba và ke
c/m tg abe= tg kbe
ah=ak
tổng ba cạnh của tg aeh luôn lớn hơn hc
CHo tg abc cân tại a vẽ tia phân giác góc a cắt bc tại h (h thuộc bc)
a) c/m tg ach = tg abh
b) gọi m là trung điẻm ac. trên cạnh bm lấy e sao cho bm = me. c/m ce//ab
c) tia ec cắt ah tại k. c/m tg ack cân tại c
d) gọi g là giao điểm của bh và ah. c/m 3GH + HC >CK
help me pls!!
xét ΔABH và ΔACH có:
\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)
\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))
AB=AC(ΔABC cân tại A)
⇒ΔABH=ΔACH(g-c-g)
xét ΔABM và ΔCEM có:
\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)
AM=MC(M là trung điểm của AC)
BM=ME(giả thuyết)
⇒ΔABM=ΔCEM(c-g-c)
⇒\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)
⇒CE//AB(điều phải chứng minh)
⇒\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)
Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)
Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)
⇒ΔACK cân tại C(điều phải chứng minh)
vì AH là tia phân giác của \(\widehat{BAC}\)
Mà ΔABC cân tại A
⇒AH là đường trung tuyến
Mặc khác M là trung điểm của AC nên BM là đường trung tuyến
Mà G là giao điểm của BM và AH
⇒G là trọng tâm của ΔABC
xét ΔABH và ΔKCH có:
BH=CH(AH là đường trung tuyến)
\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)
\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)
⇒ΔABH=ΔKCH(g-c-g)
Mà ΔABH=ΔACH
⇒ΔKCH=ΔACH
xét ΔAHC có:
AH+HC>AC(bất đẳng thức tam giác)
Mà AH=3GH; AC=CK(ΔKCH=ΔACH)
⇒3GH+HC>CK(điều phải chứng minh)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H
a, C/M tam giác ABH=tam giác ACH
B,Vẽ trung tuyến BM . Gọi G là giao điểm của AH và BM . C/M G là trọng tâm của tam giác ABC
c, Cho AB=30cm , BH=18cm . Tính AH, AG
D, Từ H kẻ HD song song với AC ( D thuộc AC) . C/M C,G,D thẳng hàng
a, Xét \(\Delta ABH\)và \(\Delta ACH\)ta có :
AB = AC ( gt )
\(H=90^o\)
AH cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)
b, Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
\(\Rightarrow BH=CH\)(2 cạnh t/ung)
\(\Rightarrow\)H là trung điểm BC
\(\Rightarrow AH\)là đường trung tuyến của \(\Delta ABC\)
Mà G là giao điểm của 2 đường trung tuyến AH và BM
Suy ra : G là trọng tâm của \(\Delta ABC\)
c, Áp dụng định lý Pytago cho \(\Delta ABH\)vuông tại H ta có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2+18^2=30^2\)
\(=AH^2=30^2-18^2\)
\(\Rightarrow AH^2=576\)
\(\Rightarrow AH=\sqrt{576}=24\)
Ta có : \(AG=\frac{2}{3}AH\)
\(\Rightarrow AG=\frac{2}{3}\cdot24\)
\(\Rightarrow AG=16\)
d, Xét \(\Delta ABC\)có H là trung điểm BC . Mà \(DH\perp AC\)( gt )
\(\Rightarrow\)D là trung điểm AB ( t/c đường trung bình của tam giác )
Xét \(\Delta ABC\)có CG là trung tuyến
Mà CD là trung truyến
=> CD và CG trùng nhau
=> C,G,D thẳng hàng ( đpcm )
ch tam giác ABC cân tại A . kẻ AH vuông góc BC tại H .a, cm tam giác ABH=tam giác ACH
b, vẽ trung tuyến BM. gọi G là giao điểm của AH và BM . chứng minh G là trọng tâm của tam giác ABC
c, cho AB=30cm , BH =18cm . Tính AH , AG
d, từ H kẻ HD song song với AC ( D € AB ) . cm 3 điểm C;G;D thẳng hàng.
Cho tg ABC cân tại A. Vẽ tia p/g AH của góc BAC biết AB=15cm, BH=9 cm.
a. CM: tg ABH = tg ACH
b. Vẽ trung tuyến BD. BD cắt AH tại G. Cm G là trọng tâm của tg ABC. Tính GA
c. Qua H vẽ đường thẳng song song với AC cắt AB tại E. Cm : 3 điểm A,G,E thẳng hàng
cho tam giác ABC cân tại A. kẻ AH vuông góc BC tại H
a) CM tam giác ABH= tam giác ACH
b) vẽ trung tuyến BM, gọi G là giao điểm của AH và BM. CM G là trọng tâm cuẩ tam giác ABC
c) CHo AB= 30cm, BH= 18 cm. Tính AH<,AG
d) Từ H kẻ HD// với AC ( D thuộc AB) CM 3 điểm C,G,D thẳng hàng
xét tam giác BMC có:
CA vuông góc với BM (gt) => CA đường cao tam giác BMC
MK vuông góc với BC (cmt) => MK đường cao tam giác BMC
Mà CA cắt MK tại D (gt)
từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC
=> BD vuông góc với CM ( t/c )
k nha,
a) Xét tam giác vuông ABH và tam giác vuông ACH có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> Tam giác ABH= tam giác ACH ( cạnh huyền- cạnh góc vuông)
b) Có tam giác ABH= tam giác ACH ( theo câu a)
=> BH=CH ( 2 cạnh tương ứng)
=> AH là trung tuyến của tam giác ABC
G là giao điểm của 2 đường trung tuyến AH và BM
=> G là trọng tâm của tam giác ABC
c) Xét tam giác ABH tại H có \(AB^2=AH^2+BH^2\)
=>302=AH2+182
=>AH2=302-182=576
=>AH=24
Có G là trọng tâm của tam giác ABC
=> \(AG=\frac{2}{3}AH=\frac{2}{3}.24=16\)
Vậy AH=24 cm, AG=16 cm
d) Tam giác vuông GHB và tam giác vuông GHC có
Cạnh GH chung
BH=CH
=> tam giác GHB= tam giác GHC ( 2 cạnh góc vuông)
=>Góc GBH= góc GCH
=> ABC-GBH=ACB-GCH
=> góc ABM= góc ACD
Xét tam giác ADC và tam giác AMB có
góc A chung
AB=AC
ABM=ACD
=> tam giác ADC= tam giác AMB
=> AD=AM
Tam giác DAG và tam giác GAM có
AD=AM
DAG=GAM( vì AG là đường cao của tam giác cân ABC đồng thời là đường phân giác)
Cạnh AG chung
=> \(\Delta DAG=\Delta GAM\) (c.g.c)
=> AD=AM
Có AM=MC =>AD=MC
Ta có AB-AD=AC-AM
=>DB=MC
=>AD=DB
=> CD là đường trung tuyến của tam giác ABC
=> C,G,D thẳng hàng
1. Cho tg ABC cân tại A , đường cao AH .Biết AB =5cm ; BC = 6cm.
a) Tính độ dài các đoạn thẳng BH , AH
b) Gọi G là trọng tâm của tg ABC . C/m rằng ba điểm A , G , H thẳng hàng .
2. Cho tg ABC cân tại A . Gọi M là trung điểm của cạnh BC .
a) C/m : tg ABM = tg ACM
b) Từ M vẽ MH vuông góc với AB và MK vuông góc với AC , C/m BH = CK.
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I.C/m tg IBM cân.
3. Cho tg ABC cân tại A ( góc A < 90 độ) , vẽ BD vuông góc với AC và CE vuông góc AB .Gọi H là giao điểm của BD và CE.
a) C/m : tg ABD = tg ACE
b) C/m tg AED cân
c) C/m AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.C/m góc ECB = góc DKC.
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!!!!!!!!!!!!
Cho tam giác ABC cân tại A. Kẻ AH \(\perp\)BC tại H
a, Cm : Tam giác ABH = Tam giác ACH
b, Vẽ trung tuyến BM . Gọi G là giao điểm của AH và BM . Chứng minh G là trọng tâm của tam giác ABC
c,Cho AB=30cm , BH=18cm .Tính AH , AG
d, Từ H kẻ HD song song với AC ( D thuộc AB) . CHứng minh 3 điểm C,G,D thẳng hàng
cho tam giác ABC cân tai A, kẻ AH vuông góc với BC tại H
a. chúng minh tam giác ABH = tam giác ACH
b. vẽ trug tuyến BM. gọi G là giao điểm AH và BM. chứng minh G Là trọng tâm tam giác ABC
c. Từ H kẻ HD song song với AC ( D thuộc AB) . chứng minh C,G,D thẳng hàng