Tìm giá trị nhỏ nhất của biểu thức sau:M=|x-2002|+|x-2001|
Tìm giá trị nhỏ nhất của biểu thức sau
M= / x - 2002 / + /x - 2001 /
Ta có:\(M=\left|x-2002\right|+\left|x-2001\right|\)
\(=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Vậy \(MinM=1\) khi \(\orbr{\begin{cases}x=2002\\x=2001\end{cases}}\)
Áp dụng đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|.\) dấu = khi \(AB\ge0\)
Mà \(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)
\(\Rightarrow M=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|\)
\(\Rightarrow M\ge\left|-1\right|\Rightarrow M\ge1\)dấu = khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)
Vậy \(M_{min}=1\)
\(M=\left(x-2002\right)+\left(x-2001\right)=x+x-2002-2001\)
\(=2x-4003=2x-2-4001=2\left(x-1\right)-4001\ge-4001\)
Vậy GTNN của M là -4001 tại x=1.
Tìm giá trị nhỏ nhất của biểu thức
M= |x - 2002| + |x - 2001|
Tìm giá trị nhỏ nhất của biểu thức:
\(B=\frac{\left(x-2001\right)\left(y-2002\right)}{\left(x-2001\right)^2+\left(y-2002\right)^2}+\frac{x-2001}{y-2002}\) \(+\frac{y-2002}{x-2001}\)
Tìm giá trị nhỏ nhất của biểu thức:
A=0,6+|1/2-x|B=|2x-1/3|+107C=|x-2002|+|x-2001|A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3
⇒Amin=−3⇒Amin=−3 khi x=2x=2
B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10
⇒Bmin=10⇒Bmin=10 khi x=−12x=−12
C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36
⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5
D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21
⇒Cmax=21⇒Cmax=21 khi x=−4x=−4
E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5
⇒Emax=5⇒Emax=5 khi x=2
tìm giá trị lớn nhất của biểu thức
f) F = - | x - 5 | - | y + 2 | + 2001
2) tìm giá trị nhỏ nhất và lớn nhất của biểu thức
A = | x + 1,2 |
B = | 0,6 - x | + 1/9
C = 2004/ 2005 - | x - 0,3 |
D = - 2003 / 2002- | 2000/2001 - 2x
E = -3,4 - | x - 1,2 | - | 9 - y |
tìm giá trị nhỏ nhất của các biểu thức sau
a, A=|3x+8,4|-14,2
b, B=|4x-3|+|5y+7,5|+17,5
c, C=|x-2002|+|x+2001|
giúp mk với các bn
có
A=|3x+8,4|-14,2
=>A=|3x+8,4|-14,2≥-14,2
dấu "=" xảy ra khi |3x+8,4|=0 =>x=2,8
vs minA=-14,2 khi x=2,8
mình không pk đúng hay sai nx
a) \(A=\left|3x+8,4\right|-14,2\ge-14,2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow3x+8,4=0\Leftrightarrow x=-2,8\)
Vậy........
b) \(B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(B\ge17,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)
Vậy.........
Tìm giá trị nhỏ nhất của biểu thức:
A = |x – 2001| + |x -1|
Vì |1 - x| = |x - 1| nên A = |x - 2001| + |x - 1|
= |x - 2001| + |1 - x| ≥| x – 2001 + 1 - x| = 2000 (Áp dụng bài 141)
Vậy giá trị nhỏ nhất của biểu thức A = 2000 khi x – 2001 và 1 – x cùng dấu
Vậy 1 ≤ x ≤ 2001
cho biểu thức M=\(\frac{\sqrt{x-2001}}{x+2}+\frac{\sqrt{x-2002}}{x}\) tìm giá trị lớn nhất của M
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000