Cho \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
Rút gọn:
a/ A=2^100-2^99+2^98-2^97+............+2^2-2
b/ B=3^100-3^99+3^98-3^97+..............+3^2-3+1
Ai nhanh nhất là đúng nhất mk tick cho
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)
Tính:
a) A=2^100 - 2^99 + 2^98 - 2^97 + ... + 2^2 - 2
b) B=3^100 - 3^99 + 3^98 - 3^97 + ... + 3^2 - 3
cho A = 2^100 - 2^99 - 2^98 - 2^97 - ... - 2^2 - 2
A = 2^100 - 2^99 - 2^98 - 2^97 - ... - 2^2 - 2
A = 2^100-(2^99+2^98+2^97+...+2^2+2)
=> A = 2^100-B (Ta đặt tổng: 2^99+2^98+2^97+...+2^2+2 là B)
B=2^99+2^98+2^97+...+2^2+2
=> 2B=2^100+2^99+2^98+...+2^3+2^2
=> 2B-B=(2^100+2^99+2^98+...+2^3+2^2)-(2^99+2^98+2^97+...+2^2+2)
=> B = 2^100-2
=> A-B=2^100-(2^100-2)
=> A-B=2^100-2^100+2
=> A-B= 2.
Vậy A=2
K mình nhá, mình giải chi tiết rồi đó nha !!!
thu gọn các tổng :
A=2^100 - 2^99 +2^98 - 2^97 +...+ 2^2 - 2
B= 3^100 - 3^99 + 3^98 - 3^97 +...+ 3^2 - 3 +1
A = 2100 - 299 + 298 - 297 +...+ 22 - 2
=> 2A = 2101 - 2100+299 - 298+...+23-22
=> 2A+A= 2101 -2
=> \(A=\frac{2^{101}-2}{3}\)
phần B bn lm tương tự nha!
Thu gọn tổng sau:
a) A=1+3+3^2+...+3^100
b) B=2^100-2^99+2^98-2^97+...+2^2-2
c) C=3^100-3^99+3^98-3^97+...+3^2-3+1
a) A =1+3+32+33+...+3100
3A = 3 + 32+33+...+3101
3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)
2A = 3101-1
A = \(\frac{3^{101}-1}{2}\)
Thùy An làm sai rùi
a) A=1+3+3^2+...+3^100
3A=3+3^2+....+3^101
3A-A=1+3^101
A=(1+3^101)/2
a) A=1+3+32+...+3100
3A= 3+32+...+3100+3101
3A-A=3101-1
2A=3101-1
A=(3101-1):2
Rút gọn:
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
2^100-2^99+2^98-2^97+...+2^2-2
3^100-3^99+3^98-3^97+...+3^2-3+1
Giúp với các bạn ơi!!!
Cho \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ 2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\\ 2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ 3A=2^{101}-2\)
Vậy \(A=\dfrac{2^{101}-2}{3}\)
Tính nhanh
a, 1-2+3-4+.....+2015-2016+2017
b,1+3-5-7+9+11+....+97-98-99+100+101
c,1-2-3+4+5-6-7+....+97-98-99+100+101
d,2^100-2^99-2^98-....-2-1
Nhanh nha m dang cần gấp