Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miko hậu đậu
Xem chi tiết
Nguyễn Minh Tuấn
20 tháng 8 2017 lúc 15:48

mình ko biết, bạn k nha

Nàng công chúa lạnh lùng
20 tháng 8 2017 lúc 15:51

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

miko hậu đậu
20 tháng 8 2017 lúc 15:57

Nàng công chúa lạnh lùng bạn biết ko 

Nguyễn Thảo Ly
Xem chi tiết
Vũ Tri Hải
15 tháng 6 2017 lúc 22:16

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

Phan Việt Quốc
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 20:47

Cả 2 biểu thức này đều ko tồn tại GTNN

GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)

Nguyễn Việt Lâm
26 tháng 12 2022 lúc 21:12

Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)

Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)

\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)

\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)

Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)

\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)

\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)

linh chi
Xem chi tiết
alibaba nguyễn
2 tháng 8 2016 lúc 20:10
X có đương không
Hồ Minh Phi
Xem chi tiết
Dương Ngọc Minh
Xem chi tiết
Đinh Đức Hùng
26 tháng 8 2017 lúc 14:37

\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)

Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :

\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)

\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

Nguyễn Quỳnh Nga
26 tháng 8 2017 lúc 14:43

Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha

Nguyễn Quỳnh Nga
26 tháng 8 2017 lúc 14:45

Mình nhầm, GTNN=4 chứ ko phải =3 đâu nha!

Nguyễn Tiến Đạt
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Phía sau một cô gái
28 tháng 7 2021 lúc 20:40

Tham khảo thử đúng không nha mn

Áp dụng bất đẳng thức cô si cho hai số dương ta có

\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)

Dấu " = " xảy ra khi:   \(x=y=\dfrac{2017}{2}=1008,5\)

Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)

 

Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 6 2020 lúc 16:26

Bài làm:

Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)

\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)

Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)

Học tốt!!!!

Khách vãng lai đã xóa