Cho tam giác abc đều cạnh 4. Lấy E, F trên các cạnh AB, AC sao cho AE = CF. CMR FE >= 2
Bai 1 : Cho tam giác ABC , trên các cạnh AB ; AC lấy D ; E sao cho AD = 1/4 AB ; AE = 1/2 AC . DE cắt BC tại F . CMR : CF = 1/2
BC
Lấy H là trung điểm của BC, I là trung điểm của AB, G là trung điểm của EF
O là giao của EH và IC
trong tam giác ABC có IE là đường trung bình nênIE//BC=> IECH là hình bình hành->
EO=OH,IO=OC
trong tam giác ACI có DE là đường trung bình-> DE//IC -> OC//EF
Do OC//EF và EO=OH EG=GF=> OC đi qua trung điểm của HF => C là TĐ HF
=> CF=1/2BC (đpcm)
Cho tam giác ABC .trên các cạnh AB và AC lấy các điểm D và E sao cho AD=1/4 AB .AE=1/2 AC .đường thẳng DE cắt đường thẳng BC tại F .cmr :CF:1/2 BC
Cho tam giác ABC có AB<AC. Kẻ tia phân giác AD( D thuộc BC). Trên cạnh AC lấy điểm E, trên tia AB lấy điểm F sao cho AE=AB, AF=AC. Cmr:
a) Tam giác ABD=Tam Giác AE b) DF=DC c) AD cắt CF tại M. Cmr AM vuông góc với CF d) C/m F,D,E thẳng hàng e) Tam Giác ABC cần có thêm điều kiện gì thì AD= 2.MDa)Xét tam giác ABD và tam giác AED
AB=AE(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung)
\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)
b)Xét tam giác ADF và tam giác ADC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
c)Xét tam giác AMF và tam giác AMC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)
\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)
\(\Rightarrow\)AMF=AMC=1800:2=900
Do đó Am vuông góc với CF
a)XÉT ▲ABD VÀ ▲AED CÓ:
AD CHUNG
AB=AE(GT)
GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)
=> ▲ABD= ▲AED(C-G-C)
B)XÉT ▲ADF VÀ ▲ADC CÓ
AD CHUNG
AF= AC(GT)
GÓC BAD= GÓC EAD(AD PHÂN GIÁC)
=> ▲ADF= ▲ADC(C-G-C)
=>DF=DC
cho tam giác ABC. Trên cạnh AB và AC lấy điểm D và E sao cho AD=1/4 AB, AE=1/2 AC. DE cắt BC tại F. CM; CF=1/2 BC
BẠN TỰ VẼ HÌNH NHÉ
Lấy K trung điểm AB. Nối K với E, K với C. Như vậy D trung điểm AK
Ta có do KEKE là đường trung bình tam giác ABCABC nên KE//BCKE//BC và KE=12BCKE=12BC.
Lại có DEDE là đường trung bình tam giác AKCAKC nên DE//KCDE//KC.
Xét tam giác KEC và tam giác FCEcó
+ chung CE
+ ˆKEC=ˆFCE^ (so le trong do KE//BC)
+ ˆADE=ˆACK(đồng vị) mà ˆADE=ˆCEFnên ˆCEF=ˆACK
Như vậy △KEC=△FCE (g.c.g) nên CF=EK
Mà EK=1/2BCnên CF=1/2B
Ta có đpcm
Cho tam giác ABC có AB=AC. Trên cạnh AB, AC thứ tự lấy các điểm F,E sao cho AE=AF. Gọi O là giao điểm của BE và CF. CMR:
a) BE=CF
b) OB=OC
c) AO vuông góc với BC
a) Ta có : AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
AB = AC
Mà AF = AE
=> FB = EC
Xét ∆FCB và ∆EBC ta có :
ABC = ACB (cmt)
FB = EC (cmt)
BC chung
=> ∆FCB = ∆EBC (c.g.c)
=> BE = CF (dpcm)
b) Vì ∆FBC = ∆EBC (cmt)
=> BFO = CEO ( 2 góc tg ứng )
Xét ∆BFO và ∆CEO ta có :
FB = EC (cmt)
BFO = CEO (cmt)
FOB = EOC ( đối đỉnh)
=> ∆BFO = ∆CEO (g.c.g)
=> BO = OC
=> ∆BOC cân tại O
c) Gọi H là giao điểm của AO và BC
G là giao điểm của FE và AO
Ta có : AF = AE (gt)
=> ∆AFE cân tại A
Xét ∆FAG và ∆EAG ta có :
AF = AE
AFG = AEG ( ∆AFE cân tại A)
AG chung
=> ∆FAG = ∆EAG (c.g.c)
=> FAG = EAG ( 2 góc tương ứng)
=> AG là phân giác của BAC
Mà H nằm trên tia đối AO
=> AH là phân giác ∆ABC
=> AH vuông góc với BC (trong ∆ cân có phân giác đồng thời là trung trực ∆ ABC )
Cho tam giác ABC đều. Trên các cạnh AB, BC, AC lấy 3 điểm theo thứ tự D, E, F sao cho AD=BE=CF
a) CMR tam giác DEF đều
b) Gọi O là giao điểm các dường trung trưc của tam giác ABC. CMR O cũng là giao điểm các đường trung trực của tam giác DEF
cho tam giác ABC vuông tại B trên AB,BC,AC lấy các cạnh lần lượt là D,F,E sao cho AD=AE, CF=CE. tính góc def
cho tam giác ABC. Trên AB,AC lần lượt lấy D,E sao cho AD=1/4 AB,AE=1/2 AC. DE cắt BC tại F. CMR CF=1/2 BC
cho tam giác ABC. Hãy tìm trên cạnh AB điểm E, trên cạnh AC điểm F sao cho EF//BC và AE = CF.
Lời giải: Gọi ssooj dài AB = c , AC = b, AE = BF = x thì AF = (b -x) .Vì EF//BC nên ta có : \(\frac{AE}{AB}=\frac{AF}{AC}\) Tức là \(\frac{x}{c}=\frac{b-x}{b}\)Theo tính chất của dãy tỷ số bằng nhau ta có : \(\frac{x}{c}=\frac{b-x}{b}=\frac{x+\left(b-x\right)}{c+b}=\frac{b}{b+c}\) Tức là \(\frac{x}{c}=\frac{b}{b+c}\) Suy ra cách xác định điểm E như sau (Xem hình vẽ ở trên) :
- Kéo dài AC về phía C, lấy điểm D sao cho CD = AB = c
- Nối BD. Kẻ qua C đường thẳng (d) song song với BD, giao điểm của đường thẳng (d) với cạnh AB chính là điểm E
- Kẻ qua E đường thẳng \(\left(\Delta\right)\)giao điểm của \(\left(\Delta\right)\)với cạnh AC chính là ddirrt, F.
CHÚC CÁC ANH CHỊ CHĂM CHỈ HỌC, HỌC GIỎI