Cho tam giác ABC.M là trung điểm của BC.CM AB+AC>2AM
Cho tam giác ABC.O là điểm bất kì nằm trong tam giác.CM\(\dfrac{AB+AC+BC}{2}\)<OA+OB+OC<AB+AC+BC
Cho tam giác ABC.M là trung điểm cạnh BC.CMR AB + AC > 2AM
Cho tam giác ABC.M là trung điểm cạnh BC.CMR AB + AC > 2AM
\(AB+BE\ge AE=2AM\)(*)
tam giác AMC=tam giácBME (c.g.c)
=> BE=AC
thay vào (*) ta có AB+AC=2AM (ĐPCM)
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
Cho tam giác ABC . M là điểm bất kì nằm trong tam giác . cHứng minh : 2(MA+BP+CQ ) >AB +AC+BC
P/s. sửa đề : Chứng minh : \(2\left(AM+BM+CM\right)>AB+AC+BC\)
Xét tam giác AMB ta có :
\(AM+BM>AB\)( bất đẳng thức trong tam giác ) (1)
Xét tam giác AMC ta có :
\(AM+CM>AC\)(bất đẳng thức tam giác )(2)
Xét tam giác BMC ta có :
\(BM+CM>BC\)(bất đẳng thức tam giác )(3)
Từ(1) ;(2) và (3)
\(\Rightarrow AM+BM+AM+MC+BM+MC>AB+AC+BC\)
\(\Rightarrow2AM+2BM+2CM>AB+AC+BC\)
\(\Rightarrow2\left(AM+BM+CM\right)>AB+AC+BC\) (đpcm)
a) Cho tam giác ABC , M là một điểm bất kì nằm trong tam giác . Chứng minh: 2 ( MA +MB +MC) > AB + AC + BC .
b) Cho tam giác ABC , có AN , BP , CQ là ba trung tuyến . Chứng minh : 4/3 ( AN + BP + CQ) > AB + AC + BC .
Cho tam giác ABC, O là một điểm bất kì nằm trong tam giác. Dựng các đường thẳng DE, FK, MN tương ứng song song với AB, AC và BC sao cho F và M trên cạnh AB, E và K trên cạnh BC và N, D trên cạnh AC.
a)CMR:\(\dfrac{ÀF}{AB}+\dfrac{BE}{BC}+\dfrac{CN}{AC}=1\)
b)Đặt \(S_1=S_{OME};S_2=S_{OEK};S_3=S_{ODN};S=S_{ABC}\)
CMR\(S=\left(\sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3}\right)^2\)
giúp mình với ạ, cần gấp
1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.
2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.
a) Tính: RB/RC,PA/PM ?
b) Đường thẳng đi qua N song song với BC cắt AC tại T. Chứng minh rằng: CN, BT cắt nhau tại trung điểm của AM.
3) Cho tam giác ABC có trung tuyến AI và trọng tâm G. Qua G dựng đường thẳng d bất kì cắt các cạnh AB, AC lần lượt tại M, N.
a) Chứng minh rằng: AB/AM + AC/AN có giá trị không đổi khi (d) thay đổi.
b) Xác định vị trí của đường thẳng (d) để AM/AB+AN/AC đạt GTNN.
4) Cho tam giác ABC ,một đường thẳng thay đổi cắt các cạnh AB, AC tại E, F sao cho: AB/AE+AC/FA=4 . Chứng minh rằng EF luôn đi qua một điểm cố định.
5) Cho tam giác nhọn ABC và điểm D bất kì trên cạnh BC, lấy một điểm E thuộc đoạn AD, F thuộc đoạn DE. Một đường thẳng qua F song song với BC cắt AB, EB, EC, AC theo thứ tự tại M, P, Q, N. Đường thẳng MD và EB cắt nhau tại R, ND và EC cắt nhau tại S, DP và AB cắt nhau tại G, DQ và AC cắt nhau tại H. Chứng minh rằng:
a) MP/BD=NQ/DC
b) RS // BC
c) GH // RS
cho tam giác ABC vuông cân tại A. O là trung điểm của BC. D là trung điểm của AB. E là trung điểm của AC. lấy M nằm trong góc DOE. chứng minh MB+MC>2AM
cho tam giac nhon ABC.O là diểm bất kì trong tam giác sao cho OBA=OCA.hạ OH vuông góc AB,OK vuông góc AC.goi M là trung điểm BC.chung minh HM=KM