u 6:
Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D.Biết . Độ dài cạnh BC là cm.
Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D.Biết \(AI=\frac{3}{4}AD\). Độ dài cạnh BC là cm.
Xét tam giác ABD Có AI là phân giác
=> \(\frac{BD}{ID}\) = \(\frac{AB}{AI}\)
=> \(\frac{AI}{ID}\) = \(\frac{AB}{BD}\)
ID = AD - AI = AD - 3AD/4 = AD/4
=> \(\frac{AB}{BD}\) = \(\frac{AI}{ID}\) = \(\frac{3AD}{4}\)\(\frac{4}{AD}\)= 3
=> AB = 3BD
=> AB = \(\frac{3BC}{2}\)
Chu vi tam giác cân ABC = 80cm
=> AB + AC + BC = 80
=> 2AB + BC = 80
=> 3BC + BC = 80
=> BC = 20 cm
mình cũng có bài giống bạn á
Cho tam giác ABC cân tại A có chu vi là 80cm. I là giao điểm của các đường phân giác. AI cắt BC ở D. Biết
AI = \(\dfrac{3}{4}\)AD. Tính các cạnh tam giác ABC.
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 8 | Học trực tuyến
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
cho tam giac abc cân tại a có chu vi là 80 goi i là giao điểm của các đường phân giác trog tam giác al cắt bc tại d biết ai=3/4 ad tính đọ dài bc
Cho tam giác ABC cân tại A(A nhọn). Tia phân giác của góc A cắt BC tại I
a,CM: AI vuông góc BC.
b,Gọi M là trung điểm của AB,G là giao điểm của CM vs AI. Chứng minh rằng BG là đường trung tuyến của tam giác ABC
c,Biết AB = AC =15cm, BC =18cm. Tính GL
1, Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
2,Cho tam giác ABC trung tuyến AM đường phân giác góc AMB cắt AB ở D đường phân giác góc AMC cắt AC ở E,
a,Chứng minh: DE//BC .
b, I là giao điểm của DE và AM
CM: I là trung điểm của DE
3,Cho tam giác ABC có BC = 5, AC = 6 và AB = 7. Gọi O là giao điểm ba đường phân giác, G là trọng tâm của tam giác.
Tính độ dài đoạn OG.
Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
AB + BC + AC = 74 (*)
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB)
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được:
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm
cho tam giác ABC vông tại B tia phân giác của góc BAC cắt BC tại D kẻ DH\(\perp\)AC sao cho HD cắt AB tại I Kẻ đường thẳng vuông góc với BC sao cho đường thẳng đó cắt AD tại E gọi D là trung điểm của AE giao điểm của CD và AI là I
a, CM AB = AH
b,CM 3 điểm I,D,H thẳng hàng
c,biết rằng tron tam giác tổng độ dài 2 cạnh bất kì bao giờ cũng lớn hơn 2 cạnh còn lại gọi D là nửa chu vi của tam giác ACI CM ZPlowns hơn AE+CF
Cho tam giác ABC cân tại A (góc A nhọn) , đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. Biết AI = 5 cm, HI = 4 cm. Tính độ dài cạnh BC.
Áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{BH}{IH}=\dfrac{AB}{AI}\Rightarrow\dfrac{BH}{4}=\dfrac{AB}{5}\) \(\Rightarrow AB=\dfrac{5BH}{4}\)
Áp dụng định lý Pitago cho tam giác ABH:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow\left(\dfrac{5BH}{4}\right)^2=BH^2+9^2\)
\(\Rightarrow BH^2=144\Rightarrow BH=12\)
\(\Rightarrow BC=24\)
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath