ta biết n!=1.2.3.4.....n
Biết n!=1.2.3.4.......n Tính 1.1!+2.2!+3.3!+......+5.5!= ?
=1!(2-1)+2!(3-1)+3!(4-1)+4!(5-1)+5!(6-1)
=2!-1!+3!-2!+4!-3!+5!-4!+6!-5!
=6!-1!
=720-1
=719
biết n!=1.2.3.4.....n (n thuộc z).tính tổng 1+1.1!+2.2!+3.3!+....+100.100!
ta kí hiệu n! là tích của n số tự nhiên liên tiếp kể từ 1,tức là : n!=1.2.3.4....n
Hãy tính:
5!
4!-3!
Biết n! = 1.2.3.4.....n với n thuộc N*
Chứng minh rằng 1! + 2! + 3! + .....+ 2014! không thể là số chính phương
Biết n! = 1.2.3.4...n (n thuộc N; n lớn hơn hoặc bằng 2)
Chứng minh: 2/3! + 3/4! + .....+ 2013/2014! < 1/2
Biết n! = 1.2.3.4...n (n thuộc N; n lớn hơn hoặc bằng 2)
Chứng minh: 2/3! + 3/4! + .....+ 2013/2014! < 1/2
CM $\frac{1}{2!}+\frac{2}{3!}+...+\frac{n-1}{n!} = \frac{n-1}{n!}$ với $n$ là số tự nhiên thỏa mãn $n\geq 2$
Bạn tham khảo lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-a122389910so-sanh-a-voi1voi-n123ntich-cua-n-so-tu-nhien-khac-0-dau-tien.3965156752
Áp dụng kết quả trên:
$\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}=\frac{2014!-1}{2014!}<1$
$\Rightarrow \frac{2}{3!}+...+\frac{2013}{2014!}< 1-\frac{1}{2!}=\frac{1}{2}$
Ta có đpcm.
Biết n! = 1.2.3.4...n (n thuộc N; n lớn hơn hoặc bằng 2)
Chứng minh: 2/3! + 3/4! + .....+ 2013/2014! < 1/2
tìm tất cả các số tự nhiên n sao cho:
A= 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4.....n là số chính phương
Ta có :
A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n
A = 1! + 2! + 3! + 4! + ... + n!
Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5) nên tổng của chúng cũng tận cùng là 0.
\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0)
A = (......3) + (.....0)
A = (......3)
Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)
A= 1+1.2+1.2.3+1.2.3.4+....+1.2.3.4........n là số chính phương không? Giải thích?
Ta có:
\(A=1+1.2+1.2.3+...+1.2.3.....n\)
\(=1!+2!+3!+4!+...+n!\)
Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.
Ta lại có:
\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)
\(=33+\left(...0\right)\)
\(=\left(...3\right)\)
Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.