biết : \(\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}=0\)
vậy 4x+y-3z
Biết \(\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)=0\)
Tính \(4x+y-3z\)
mình gợi ý nha
ta thấy biểu thức đầu \(\ge\)0
biểu thức 2\(\ge0\)
\(\Rightarrow\)biểu thức 3 =0
để vế trái =0
rồi lần lượt tìm xyz
Tìm \(x;y\)biết: \(\left(2x-1\right)^{2016}+\left(3y+6\right)^{2014}+\left(z-1\right)^{2012}\)
Cho x,y,z thỏa mãn đồng thời: \(3x-2y-2\sqrt{y+2012}+1=0\); \(3y-2z-2\sqrt{z-2013}+1=0\);\(3z-2x-2\sqrt{x-2}-2=0\)Tính \(C=\left(x-4\right)^{2016}+\left(y+2012\right)^{2017}+\left(z-2013\right)^{2008}\)
\(\hept{\begin{cases}3x^2+2y+1=2z\left(x+2\right)\\3y^2+2z+1=2x\left(y+2\right)\\3z^2+2x+1=2y\left(z+2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+2y+1=2xz+4z\\3y^2+2z+1=2xy+4x\\3z^2+2x+1=2yz+4y\end{cases}}}\)
Cộng 3 vế vào rồi chuyển vế ta được
\(2x^2+2y^2+2z^2-2xy-2yz-2zx+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2 +\left(z-x\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Dễ thấy VP > 0
Dấu "=" khi x = y = z = -1
(2x-1)2016 +(3y+6)2014+(z-1)2012=0
Vậy 4x+y-3z = ...........................
x=1/2,y=-2;z=1
Vậy 4x+y-3z=4.1/2+(-2)-3.1=-3
Ta có (2x-1)\(^{2016}\)+(3y+6)\(^{2014}\)+(z-1)\(^{2012}\)=0
\(\Leftrightarrow\)(2x-1)\(^{2016}\)=0 ; (3y+6)\(^{2014}\)=0 ; (z-1)\(^{2012}\)=0
Ta co :(2x-1)\(^{2016}\)=0\(\Rightarrow\)2x-1=0\(\Rightarrow\)2x=1\(\Rightarrow\)x=\(\frac{1}{2}\)
(3y+6)\(^{2014}\)=0 \(\Rightarrow\)3y+6=0 \(\Rightarrow\)3y=-6 \(\Rightarrow\)y=-2
(z-1)\(^{2012}\)=0 \(\Rightarrow\)z-1=0 \(\Rightarrow\)z=1
Vậy 4x+y-3z=4*\(\frac{1}{2}\)+(-2)-3*1=2-2-3=-3
Cho các số thực x,y,z thỏa mãn: x+2y+3z=0 và 2xy+6yz+3zx=0. Tính giá trị của biểu thức:
S=\(\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Giúp mik vs gấp quá !
Cho các số dương x;y;z thỏa mãn:\(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức :\(S=\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Cho các số thực x, y, z thỏa mãn \(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức \(S=\dfrac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
- Bạn làm được bài này chưa bạn?
đặt \(\hept{\begin{cases}A=3x-2y-2\sqrt{y+2012}+1=0\\B=3y-2z-.....\\C=3z-2x.....\end{cases}}.\)
vì a=b=c=0
Suy ra A+B+C=0
A+B+c= \(\left(x\right)+\left(y\right)+\left(z\right)-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}\) " rút gọn làm tắt "
đến đây ta thêm 3-3 , 2012-2012 , 2013-2013 , 2-2 vào biểu thức rồi dùng hằng đẳng thức ta được
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2+2013-2012+2-3=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\) rút gọn
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{cases}}\)
thay vào P ta được
\(P=\left(3-4\right)^{2011}+\left(-2011+2012\right)^{2012}+\left(2014-2013\right)^{2013}\)
\(P=-1+1+1=1\)