Cho f (x) = \(1+x^3+x^5+x^7+...+x^{101}\). Tinh f(1) , f(-1)
Cho f(x)= 1 + x^3 + x^5 + x^7 +.........+ x^101.
Tính f(x)=1 f(x)=-1
`f(x)=1+x^3+x^5+.....+x^101`
`=1+(-1-1-.....-1)`
`=1+50.(-1)`
`=-49`
Cho ham so
f(x)=4^x/4^x+2
Tinh A=f(0)+f(1/101)+f(2/101)+f(3/101)+...+f(100/101)+f(1)
A=f(0)+(f(1/101)+f(100/101))+(f(2/101)+f(99/101))+...+f(1)
A=f(0)+50f(1)+f(1)
A=f(0)+51f(1)
A=4^0/4^0+2+51(4^1/4^1+2)
A=1/3+34
A=103/3
Mik ko bik đúng ko nữa
Cho f(x)=1+x^3+x^5+x^7+...+x^101
Tính f(1) và f(-1)
=>f(1)=1+13+15+...+1101
=1+1+...+1
=1+1*50 (tính theo số mũ)
=51
Với f(x)=-1=>f(-1)=1+(-1)3+...+(-1)101
=1+(-1)+(-1)+...+(-1)
=1+(-1)*50
=-49
cho f(x)=1+x^3+x^5+x^7+....+x^101
tính f(1) f(-1)
ai giúp mình với
Ta có: f(1) = 1 + 1^3 + 1^5 + 1^7 +...+ 1^101
= 1 + 50.1
= 1 + 50
= 51
Vậy f(1) = 51
Có: f(-1) = 1 + (-1)^3 + (-1)^5 + (-1)^7 + ... + (-1)^101
= 1 + 50.(-1)
= 1 - 50
= -49
Vậy f(-1) = -49
Chúc bạn học tốt nha
Cho f(x) = \(1+x^3+x^5+x^7+...+x^{101}\)
Tính f(1) , f(-1)
Tính \(f\left(1\right)\)
\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)
\(\Rightarrow f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)
\(=1+1+1+1+...+1\) (có \(51\) số \(1\))
\(=51\)
Tính \(f\left(-1\right)\)
\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)
\(\Rightarrow f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)
\(=1+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (có \(50\) số \(-1\))
\(=1+\left(-50\right)\)
\(=-49\)
Vậy: \(\left\{{}\begin{matrix}f\left(1\right)=51\\f\left(-1\right)=-49\end{matrix}\right.\)
Ta có:
a) \(f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)
\(f\left(1\right)=1+50=51\)
b) \(f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+\left(-1\right)^7+...+\left(-1\right)^{101}\)
\(f\left(-1\right)=1-50=-49\)
Cho f(x) = 1 + x3 + x5 + x7 + ...... + x101
Tính f(1) ; f(-1)
f(x) có :
\(\dfrac{101-1}{2}+1=51\)(số hạng)
\(\Rightarrow f\left(1\right)=1+1^3+1^5+1^7+..+1^{101}\)
\(=1+1+1+1+...+1\\ =51\)
\(f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+\left(-1\right)^7+...+\left(-1\right)^{101}\)
\(=1-1-1-1-...-1\)
\(=-49\)
cho đa thức f(x)= 1+ x^3 + x^5 + x^7 + ..........+ x^101.Tính f(x)=-1 và 2
với f(x)=-1 ta có:
f(-1)=1+ -(1)^3 + (-1)^5 + ..........+ (-1)^101
=1+(-1)+(-1)+...+(-1)
=-49
với f(x)=2 ta có:
f(2)=2+2^3 + 2^5 + 2^7 + ..........+ 2^101
= tự tính
với f(x)=-1 ta có:
f(-1)=1+ -(1)^3 + (-1)^5 + ..........+ (-1)^101
=1+(-1)+(-1)+...+(-1)
=-49
với f(x)=2 ta có:
f(2)=2+2^3 + 2^5 + 2^7 + ..........+ 2^101
Cho f(x) = 1+ x3+x5+x7+...+x101
Tính f(1) và f(-1)
f(1) = 1^1 + 1^3 + 1^5 + 1^7 +... +1^101
= 1+1+1+...+1
Bieu thuc tren co so so hang la : (101-1):2+1=51 so
f(1)=1.51=51
f(-1) = 1 + (-1)^3+(-1)^5+(-1)^7+...+(-1)^101
= 1 + (-1)+(-1)+(-1)+...+(-1)
Trong biểu thuc tren tu (-1)^3 den (-1)^101 co so so hang la : (101-3):2+1=47
f(-1)=1+(-1).47=1+(-1)=0
Cho f(x)bằng x mũ 3 + x mũ 5 + x mũ 7 +.....+ x mũ 101
Tính f(1) và f(-1)