Tìm số nguyên x , y biết :
A = ( 2x - 1 )2014 + ( 3y - 4 ) 2016
1.tìm số nguyên x,y thỏa mãn x+2xy-4y=14
2.cho 1/c=1/2(1/a+1/b) (a,b,c khác 0 ,b khác c )
3.tìm x,y biết (2x-5)^2014+(3y+4)^2016 < hoặc = 0
Biết x,y là các số nguyên
Giá trị nhỏ nhất của A= (2x-1)2014+(3y-4)2016 là
1)Cho P là số nguyên tố lớn hơn 3. Chứng minh rằng p2 +2015 là hợp số
2)Tìm x,y biết (2x-5)2014+(3y+4)2016<=0
tìm x,y biết [2x-5]^2016+[3y+4]^2014<hoặc=0
[2x-5]^2016+[3y+4]^2014<hoặc=0
=>2x-5=0 và 3y+4=0 (vì [2x-5]^2016+[3y+4]^2014>hoặc=0 với mọi x;y)
=>x=5/2 và y=-4/3
vậy x=5/2 và y=-4/3
a) Tìm x,y biết : I x+y-2I + I x-y-2I < hoặc = 0
b) Tìm x,y,z biết: z-15y/3 =15x-3z/8 =3y-8x/15 và 2x-y+z =13
c) Tìm số nguyên x, biết: x+ (x+1) +(x+2) +...+ 2017 =0. Biết vế trái là tổng các số nguyên liên tiếp
e) Tìm x biết: x-1/2017 + x-2/2016 - x-3/2015 = x-4/2014
f) Tìm x nguyên để
\(\sqrt{x+1}\) chia hết cho \(\sqrt{x-3}\)
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
Tìm x,y biết (2x-5)^2014+(3y+)^2016 < hoặc =0
Biết x, y là các số nguyên:
Giá trị nhỏ nhất của A =(2x-1)^2014+(3y-4)^2016 là bao nhiêu?
Các số mũ của nó đều mũ chẵn nên lũy thừa sẽ dương với mọi x, y.
Suy ra cả tổng lớn hơn hoặc bằng 0. Vậy GTNN của tổng là 0 khi cả hai lũy thừa bằng 0. Cả 2 lũy thừa bằng 0 khi và chỉ khi... tự tính tiếp.
Bài 1:
a. Tìm x biết : \(\frac{1}{2016}:2015x=\frac{-1}{2015}\)
b. Tìm các giá trị nguyên của n để phân số \(M=\frac{3n-1}{n-1}\)có giá trị là số nguyên.
c. Tính giá trị của biểu thức :\(N=xy^2z^3+x^2y^3z^4+x^3y^4z^5+...+x^{2014}y^{2015}z^{2016}\)tại \(x=-1;y=-1;z=-1\)
a, 2015x=1/2016:(-1.2015)
2015x= -2015/2016
x= -2015/2016 :2015
x= -1/2016
b, M=3n-1/n-1=3(n-1)+2/n-1=3+ 2/n-1
để M thuộc Z thì 2/n-1 thuộc z (vì 3 thuộc Z)
<=>n-1 thuộc Ư(2)
<=>n-1 thuộc (1,-1,2,-2)
<=>n thuộc (2,0,3,-1)
vậy....
|x+5|+(3y-4)^2016=0
(5x-y)^2016+|x^2-4|^2017<=0
(2x-1)^2014+(y-2/5)^2016+|x+y+z|=0
|x-1|+|x-2|+|y-3|+|x-4|=3