Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Bui
Xem chi tiết
Lương Ngọc Anh
28 tháng 6 2016 lúc 9:56

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)

                                       \(=\left(2x-7\right)^2+2\)(*)

Vì \(\left(2x-7\right)^2\ge0\) với mọi x

=> (*)\(\ge1\)

 =>(*) luôn luôn dương với mọi x

 

Ngân Hoàng Xuân
28 tháng 6 2016 lúc 10:01

ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)

vì \(\left(2x-7\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x  (đpcm)

huy nguyễn
Xem chi tiết
Nobi Nobita
31 tháng 8 2020 lúc 15:43

\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)

\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)

\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)

hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
31 tháng 8 2020 lúc 15:47

2x2 + 2x + 7

= 2( x2 + x + 1/4 ) + 13/2

= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )

Khách vãng lai đã xóa
Huy Bui
Xem chi tiết
Lưu Thị Thảo Ly
28 tháng 6 2016 lúc 10:19

x4-2x+2

= (x2)2-2x2+1+2x2-2x+1

=(x2-1)2+2(x2-x+1)

=(x2-1)2+2(x2-2.1/2x+1/4+1/4)

=(x2-1)2+2[(x-1/2)2+1/4]

vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x 

nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương

Nguyễn Thị Hồng Phúc
Xem chi tiết
Lê Hữu Minh Chiến
26 tháng 9 2016 lúc 20:46

Ta có: (x+3)(x-11)+2003=x^2-11x+3x-33+2003

                                   =x^2-8x+1970

                                   =x^2-8x+4+1966

                                   =(x^2-8x+4)+1966

                                   =(x+2)^2  +1966

 Vì (x+2)^2 > 0 và 1966>0 => Bthức trên luôn luôn dương.

   OK

Luffy Mũ Rơm
26 tháng 9 2016 lúc 19:30

bài khó wa 

chịu thui 

cố lên

Nguyễn Thị Hồng Phúc
26 tháng 9 2016 lúc 19:32

giúp mình đi mà

bài tập trong sách toán nâng cao và các chuyên đề ấy

Nguyễn Thị Hồng Phúc
Xem chi tiết
Long Phạm
24 tháng 7 2017 lúc 8:14

Ta có ( x+3 )(x-11 ) +2003= x^2 - 11x + 3x - 33 + 2003

                                      = x^2 - 8x + 1970

                                      = x2 - 8x + 16 + 1954 

                                      = ( x - 4 )^2 + 1954

   Mà ( x - 4 )^2 luôn lớn hơn hoặc bằng 0 => ( x - 4 )^2 + 1954 luôn dương

hoangtuvi
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 9 2021 lúc 11:38

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

trung nguyen
Xem chi tiết
Lê Hữu Minh Chiến
7 tháng 2 2017 lúc 21:39

-a + a - 3 = -3

=>  luôn âm

Phạm Diệu Hằng
Xem chi tiết
Hoàng Phúc
9 tháng 7 2016 lúc 16:22

\(Q=x^2+y^2+xy+x+y+10\)

\(=\left(x^2+xy+x\right)+y^2+y+10\)

\(=x^2+x\left(y+1\right)+y^2+y+10\)

\(=x^2+2.x.\frac{y+1}{2}+\left(\frac{y+1}{2}\right)^2+y^2+y-\left(\frac{y+1}{2}\right)^2+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{\left(y+1\right)^2}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{y^2+2y+1}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{1}{4}y^2-\frac{1}{2}y-\frac{1}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}y^2+\frac{1}{2}y+\frac{39}{4}\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+\frac{2}{3}y+13\right)=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+2.y.\frac{2}{6}+\frac{4}{36}-\frac{4}{36}+13\right)\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left[\left(y+\frac{2}{6}\right)^2+\frac{116}{9}\right]=\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\)

\(\left(\frac{2x+y+1}{2}\right)^2\ge0;\frac{3}{4}\left(y+\frac{2}{6}\right)^2\ge0=>\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\ge\frac{29}{3}>0\) (với mọi x;y)

Vậy biểu thức Q luôn dương với mọi giá trị của biến

✓ ℍɠŞ_ŦƦùM $₦G ✓
9 tháng 7 2016 lúc 15:51

=>4Q=4x2+4xy+4y2+4x+4y+40

=4x2+4x(y+1)+(y+1)2+4y2-y2+4y-2y+40-1

=(2x+y+1)2+3y2+2y+39

\(=\left(2x+y+1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{116}{3}\)

\(\Rightarrow Q=\left(\frac{2x+y+1}{2}\right)^2+\left(\frac{\sqrt{3}y+\frac{\sqrt{3}}{3}}{2}\right)^2+\frac{29}{3}>0\)

=>đpcm

Nguyễn Thị Thảo Hiền
Xem chi tiết
Kurosaki Akatsu
10 tháng 7 2017 lúc 19:25

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

Kurosaki Akatsu
10 tháng 7 2017 lúc 19:31

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0