Chứng tỏ rằng 1+2+2^2+2^3+...+2^2002+2^2003 chia hết cho 7
chứng tỏ rằng
a)20012002+20022003 không chia hết cho 2
b)8617+9722chia hết cho 5
chứng tỏ rằng
a)20012002+20022003 ko chia hết cho 2
b)8617+9722 chia hết cho 5
Chứng tỏ rằng :
a. 20012002 + 20022003 không chia hết cho 2
b. 8617 + 9722 chia hết cho 5
a. 20012002 +20022003=[....1]+20024.500.20023=[..1]+[...6].[...8]=[...9].Vay 20012002+20022003 ko chia het cho2.
b. 8617+9722=[....1]+[....4]=[....5].Vay 8617+9722 chia het cho 5.
Chứng tỏ rằng:
a) 52003 + 52002 + 52001 chia hết cho 31
b) 1+7+72+73+...+7101 chia hết cho 8
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
Chứng tỏ rằng :
a) 5^2003 + 5^2002 + 5^2001 chia hết cho 31
5^2003 + 5^2002 + 5^2001
= 5^2001 . 5^2 + 5^2001 . 5^1 + 5^200 . 1
= 5^2001 . 25 + 5^2001 . 5 + 5^2001 . 1
= 5^2001 . ( 25 + 5 + 1 )
= 5^2001 . 31 chia hết cho 31
Vậy 5^2003 + 5^2002 + 5^2001 chia hết cho 31
Chứng minh 1+2+2^2+2^3+...+2^2002+2^2003 chia hết cho 7.
chứng minh rằng
5^2003+5^2002+5^2001 chia hết cho 31
1+7+7^2+7^3+...+7^101 chia hết cho8
4^39+4^40+4^41 chia hết 28
Mình giúp cho đáp án đúng 100%
5^2003+5^2002+5^2001 chia hết cho 31
=5^2001.(1+5+5^2)
=5^2001.31 chia hết cho 3
hai bài kia tương tự rất dễ đúng ko
Ta có: 52003 + 52002 + 52001
= 52001.(1 + 5 + 25)
= 52001 . 31 chia hết cho 31
Ta có: 1 + 7 + 72 + ...... + 7101
= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)
= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)
= 1.8 + 72.8 + ..... + 7100 . 8
= 8.(1 + 72 + ..... + 7100) chia hết cho 8
cho A= 1+ 2002+2002^2 +2003^2+...+2002^99
B= 2002^100
Chứng tỏ rằng B> 2001 . A
Chứng tỏ: 1+ 3^2 + 3^4 + 3^6 +... + 3^2002 chia hết cho 7
Đặt A=1+32+34+36+...+32002
=> A= (1+32+34)+...+(31998+32000+32002)
=> A= 91 + ...+ 31998.(1+32+34)
=> A= 91+...+31998.91
=> A= 91.(1+...+31998)
=> A= 7.13.(1+...+31998) chia het cho 7