Chứng tỏ rằng số a=138-1 có chữ số tận cùng là 0
Chứng tỏ rằng \(A=2^2+2^4+2^6+....+2^{18}+2^{20}\) có tận cùng là chữ số 0
\(A=2^2+2^4+2^6+...+2^{18}+2^{20}\)
<=>\(A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...\left(2^{18}+2^{20}\right)\)
<=>\(A=2\left(2+2^3\right)+2^5\left(2+2^3\right)+...+2^{17}\left(2+2^3\right)\)
<=>\(A=2.10+2^5.10+...+2^{17}.10\)
<=>\(A=10\left(2+2^5+...+2^{17}\right)\) chia hết cho 10
=> A có tận cùng bằng 0 (đpcm)
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
chứng tỏ rằng nếu 1 số nguyên tố có 3 chữ số tận cùng là 104 thi số đó có ít nhất 4 ước số
1. Chứng minh : A = 32^7 - 8^10 chia hết cho 62.
2. Chứng tỏ : A = 81^3 + 9^5 có chữ số tận cùng là 0.
chứng tỏ rằng
A)số có hai chữ số tận cùng hợp thành 1 số chia hết cho 4 thì số đó chia hết cho 4
B) Số có ba chữ số tận cùng hợp thành 1 số chia hết cho 8 thì số đó chia hết cho 8
Chứng tỏ rằng tồn tại 1 lũy thừa của 3 sao cho nó có 2 chữ số tận cùng là 01
Lập dãy số :35;36;37;.....;3106
Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.
Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))
Ta có:(13m-13n)chia hết cho 100
\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100
Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100
\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01
Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01
chứng tỏ rằng một số tự nhiên có 3 chữ số tận cùng là 104 thì có ít nhất 4 ước số
Số có 3 chữ số tận cùng là 104 chia hết cho 8 , vì 104 chia hết cho 8
=>số đó có ước là 2 mũ 3
=> có ít nhất 4 ước là 1 ; 2 ; 4 ; 8
Cho số tự nhiên n. Chứng minh rằng:
a, Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b, Nếu b tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c, Số N^5 và n có chữ số tận cùng như nhau
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.