\(\dfrac{7^{x+2}+7^{x+1}+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
tim x
\(\dfrac{7^{x+2}+7^{x+1}+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Bài 3 Tìm x biết
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
b) \(\left(\dfrac{4}{5}\right)^{2x+7}=\dfrac{625}{256}\)
c) \(\dfrac{7^{x+2}+7^{x+1}+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+2}}{131}\)
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)
Tìm x :
\(\frac{\left(7^{x+2}+7^{x+1}+7^x\right)^{57}}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Tìm x:
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
=>\(\frac{7^x.\left(7^2+7+1\right)}{57}=\frac{5^{2x}.\left(1+5+5^2\right)}{131}\)
=>\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
=>7x=52x
=>7x=(52)x
=>7x=25x
=>7=25 (vô lí)
Vậy ko tìm được xthỏa mãn đề bài
Tìm x \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^3\right)}{131}\)
\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
\(7^x=5^{2x}\)khi và chỉ khi x = 0.
tìm x biết : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x.\left(7^2+7+1\right)}{57}=7^x\)
\(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}\left(1+5+5^3\right)}{131}=\frac{25^x.131}{131}=25^x\)
\(\Rightarrow7^x=25^x\Rightarrow x=0\)
ai tích mình mình tích lại cho
Tìm x :
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7^x.7^2+7^x.7^1+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)
\(\Rightarrow\frac{7^x.\left(7^2+7+1\right)}{57}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}\)
\(\Rightarrow\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7^x=5^{2x}\)
Bạn tự làm phần còn lại nhé
Tìm x
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Biến đổi vế trái, ta được : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x\left(7^2+7+1\right)}{57}=\frac{7^x.57}{57}=7^x\)\(=7^x\)
Biến đổi vế phải, ta được : \(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}=\frac{5^{2x}.131}{131}=5^{2x}=25^x\)
\(\Rightarrow7^x=25^x\)
Vì \(\left(7,25\right)=1\)
\(\Rightarrow7^x=25^x=1\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Tìm x biết
a) (7^x-2+7^x-1+7)/57=(5^x+5^2x+1+5^2x+3)/131
b) (4x-3)^4=(4x-3)^2