Cho \(\Delta ABC\) (AB < AC), M là trung điểm BC. Đường thẳng vuông góc với tia phân giác góc A tại M cắt cạnh AB, AC lần lượt tại E và F
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt tại M và N.
Chứng minh rằng :
a) DM=EN
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN;
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN.
Cho tam giác ABC (AB < AC). Vẽ tia phân giác AL của góc A (L thuộc BC).
Từ trung điểm M của cạnh BC vẽ đường thẳng vuông góc với AL, đường thẳng này cắt AC tại E và cắt AB tại D. Kẻ BB' // ED.
a) Chứng minh AD = AE và B'E = EC = BD.
b) Chứng minh các hệ thức sau :
1) 2AD = AB + AC
2) 2EC = AC - AB
c) Tính số đo góc BMD theo góc B và góc C
cho tam giác ABC, AB < AC, M là trung điểm của BC. Từ M kẻ đường thẳng vuông góc với tia phân giác góc A tại H, đường thẳng này cắt tia AB tại E và cắt tia Ac tại F
a) Cm: AE = AF
b) Vẽ đường thẳng BK song song EF và K thuộc AC. Cm KF = CF, BE = CF
Cho tam giác ABC vuông tại C (AC<BC).Vẽ tia phân giác Ax của góc BAC cắt cạnh BC tại I. Qua B vẽ dường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a) Chứng minh: tam giác AIC đồng dạng tam giác BIH
b) Cho AC = 15cm, BC = 25cm.Tính CB, CI.
c) Chứng minh HB2 = HI.HA.
d) Gọi K là trung điểm AB. Qua I vẽ dường thẳng vuông góc với IK cắt AC, BH lần lượt tại M và N. Chứng minh: I là trung điểm MN
Cho tam giác ABC cân tại A.Trên cạnh BC lấy điểm D khác C,sao cho CD<\(\frac{1}{2}\)CB,trên tia đối của tia BC lấy điểm E sao cho BE=CD.Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng sao AC và AB lần lượt ở K và F. Chứng minh rằng:
a. DK=EF
b. Đường thẳng BC cắt FK tại điểm I là trung điểm của đoạn thẳng FK.
c. Đường thẳng vuông góc với FK tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
Cho tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)và các cặp cạnh đối không song song. Gọi M là giao điểm đường thẳng AB và CD; N là giao điểm BC và AD. Đường phân giác của góc AMD cắt cạnh AD và BC lần lượt tại E và F; đường phân giác của góc ANB cắt cạnh AB và CD lần lượt tại G và H. Chứng minh rằng tứ giác HEFG là hình thoi.
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi M,N lần lượt là trung điểm của BC,AB.
a) CM: tam giác ABH đồng dạng tam giác CBA và \(AB^2=BH.BC\)
b) Tia phân giác góc ABC cắt AC tại D. Vẽ đường thẳng AK vuông góc BD tại K.
CM: tam giác BHD đồng dạng tam giác BKC.
c) CM: MN vuông góc AB và \(BH.BM=BN.BA\)
d) Từ B vẽ đường thẳng vuông góc với BC cắt MN tại I, CI cắt AH tại O.
CM: ON song song BC (câu chủ yếu)
Cho tam giác ABC vuông tại A, có AC = 5 cm, BC = 13 cm
a)TÍnh độ dài cạnh AB
b)Trên tia AC lấy điểm D sao cho AB=AD. Vẽ AE vuông góc với BD (E thuộc BD). C/m tam giác AED=tam giác AEB và AE là tia phân giác góc BAD
c)AE cắt BC tại F.C/m góc ADF=góc ABF
d)Đường thẳng vuông góc với BC tại F cắt tia CA tại H. C/m FB=FH
AI LÀM ĐÚNG VÀ NHANH MÌNH TICK CHO :DD