tim n thuoc N biet 2n+1 chia het cho n-3
tim n thuoc N biet 2n +5 chia het cho n-1
\(\left(2n+5\right)⋮\left(n-1\right)\)
\(2\left(n-1\right)+7⋮\left(n-1\right)\)
\(7⋮\left(n-1\right)\)
\(n-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(n\in\left\{-6;0;2;8\right\}\)
Mà \(n\in N\) nên \(n\in\left\{0;2;8\right\}\)
tim n thuoc z biet 4n-1 chia het cho 2n+3
4n -1 chia hết cho 2n-3
2n - 3 chia hết cho 2n -3
=> 2(2n-3) chia hết cho 2n - 3
=> 4n - 6 chia hết cho 2n -3
=> 4n -1- ( 4n -6) chia hết cho 2n - 3
=> 4n -1 - 4n = 6 chia hết cho 2n - 3
=> 5 chia hết cho 2n-3
=> 2n -3 thuộc ước của 5
đến đây dễ rồi bạn tự làm nhé
Tim n thuoc N biet:
a. n+3 chia het cho n2+1
b.2n+3 chia het cho 7
tim n thuoc N biet 3n+5 chia het cho 2n+1
\(3n+5⋮2n+1\)
Mà \(2n+1⋮2n+1\)
\(\Leftrightarrow\hept{\begin{cases}6n+10⋮2n+1\\6n+3⋮2n+1\end{cases}}\)
\(\Leftrightarrow7⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(7\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2n+1=1\\2n+1=7\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
Vậy ..
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
tim n thuoc N biet: (2n+5) chia het cho (n+1)
2n+5 chia hết cho n+1
Suy ra:2n+2+3 chia hết cho n+1
Vì 2n+2 chia hết cho n+1
Suy ra: 3 chia hết cho n+1
Suy ra: n+1 thuộc ước của 3=(1,-1,3,-3)
Suy ra: n=0,-2,2,-4 (T/M)
Vậy n=0,-2,2,-4
Tim n thuoc N , biet :
a) n+4 chia het cho n
b ) 3n + 7 chia het cho n
c ) 27 - 5n chia het cho n
d ) 2n + 3 chia het cho n - 2
Bai 1:
a) Cho A = 963 + 351 + x voi x thuoc N . Tim dieu kien cua x de A chia het cho 9 , de A khong chia hat cho 9
b) Cho B = 10 + 25 + x + 45 voi x thuoc N . Tim dieu kien cua x De B chia het cho 5 , B khong chia het cho 5
Bai 2 : Tim x thuoc N biet :
a) 1 + 2 + 3 + ..... + n = 325
b) 1 + 3 + 5 +... + ( 2n+1) = 144
c) 2 + 4 + 6 + ... + 2n = 756
tim n thuoc N biet 2n+5 chia het cho n+2
theo bài: 2n+5 chia hết cho n+2
=> 2n+4+1 chia hết cho n+2
=> 2(n+2)+1 chia hết cho n+2
=> 1 chia hết cho n+2
-> n+2 thuộc U(1)
mà U(1)= -1'1
=> n+2= -1;1
=> n= -3;-1