cho ba số tự nhiên a,b,c thỏa mãn a<b < c ; 23 < a < 30
10<c<26
1) Cho ba số tự nhiền a,b,c thỏa mãn \(a^2+b^2=20c+2\).Chứng minh rằng tồn tại số tự nhiên chỉ toàn chữ số 1 chia hết cho ab
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Dùng ba chữ số 4,0,5 hãy ghép thành các số tự nhiên có ba chữ số khác nhau thỏa mãn điều kiện:
a, Số đó chia hết cho 2
b, Số đó chia hết cho 5
a) Các số lập được là:
450;504;540
b) Các số lập được là;
405;450;540
đáp án nè bn
a)số đó chia hết cho 2 là:504,540,450
b)số đó chia hết cho 5 là 504,405,540
đúng thì bn nhớ tc nhé
Cho hai số tự nhiên a, b thỏa mãn (a/4)+(b/3) = (a+b)/7. Tính a.b
lộn lộn ;v
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2= c^2 thì abc chia hết cho 60
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 2 (vô lí) Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\)\(⋮\)\(5\) Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\) \(⋮\)\(5\)Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 3 (vô lí). Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\) \(\left(2\right)\)+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
Tìm tất cả các bộ 3 số tự nhiên (a,b,c) đồng thời thỏa mãn ba điều kiện sau:
a< b< c
6 < a < 10
8< c< 11
Các số tự nhiên a,b,c thỏa mãn ba điều kiện trên là :
Nếu a = 7 thì b = 8 ; c = 9
Còn nếu a = 8 thì b = 9 ; c = 10
CHÚC BẠN HỌC TỐT TRONG NĂM HỌC 2017-2018
THÂN
Các số tự nhiên a,b,c thỏa mãn ba điều kiện trên là :
\(\orbr{\begin{cases}a=7;b=8;c=9\\a=8;b=9;c=10\end{cases}}\)
TK NHA
Cho 3 số tự nhiên a,b,c thỏa mãn:
ab=bc=ca
Chứng minh rằng:a=b=c
\(2^3=3^4=4^2\)
Thế là vô lý rồi, phép trên ko = nhau.
Lê Hà Phương a; b; c phải thỏa mãn ab = bc = ca
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta xét hiệu:
\(\left(10a+50b\right)-\left(10a+b\right)=10a+50b-10-b\)
\(=49b⋮7\)
\(\Rightarrow\left(10a+50b\right)-\left(10a+b\right)\) \(\left(1\right)\)
Theo bài ra:\(a+5b⋮7\)
\(\Rightarrow10\left(a+5b\right)⋮7\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra:
\(10a+b⋮7\)
Vậy nếu \(a+5b\) chia hết cho 7 thì \(10a+b\) cũng chia hết cho 7.
Cho a,b là các số tự nhiên thỏa mãn a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7.
Ta có :
\(2\left(10a+b\right)+\left(a+5b\right)=20a+2b+a+5b=\left(20a+a\right)+\left(2b+5b\right)\)
\(=21a+7b=7\left(3a+b\right)\)
+) Nếu : \(\left(10a+b\right)⋮7\Rightarrow\left(a+5b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
+) Nếu : \(\left(a+5b\right)⋮7\Rightarrow2\left(10a+b\right)⋮7\) ( Vì : \(7\left(3a+b\right)⋮7\) )
Mà : 2 và 7 là hai số nguyên tố cùng nhau .
\(\Rightarrow10a+b⋮7\)
Vậy ...