Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Anh Nguyễn
Xem chi tiết
hoang le
Xem chi tiết
Đỗ Lê Tú Linh
9 tháng 6 2015 lúc 11:44

\(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)\(=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{100}{100}-\frac{1}{100}\right)+0+...+0=\frac{99}{100}\)Vậy B=99/100

MK k chắc nữa

Minh Triều
9 tháng 6 2015 lúc 11:47

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{100-1}{100}=\frac{99}{100}\)

Bùi Anh Khoa
Xem chi tiết
le tien thanh
Xem chi tiết
Nguyễn Anh Quân
25 tháng 1 2018 lúc 21:21

= 1-1/2.3-1/3.4-....-1/99.100

= 1-1/2+1/3-1/3+1/4-......-1/99+1/100

= 1-1/2+1/100

= 51/100

Tk mk nha

Phạm Hải Đăng
Xem chi tiết
ミ꧁༺༒༻꧂彡
6 tháng 4 2023 lúc 22:02

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{1}-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

\(\cdot\) LÀ DẤU \(\times\)

A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)\(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)

A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)

A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

A = \(\dfrac{99}{100}\)

Vũ Sinh Kiệt
6 tháng 4 2023 lúc 22:00

49/100

 

Quỳnh Ngân
Xem chi tiết
Dragon Super
18 tháng 4 2016 lúc 18:15

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Kalluto Zoldyck
18 tháng 4 2016 lúc 18:15

B = 1/1.2 + 1/2.3 + ......+ 1/99.100

B = 1 - 1/2 + 1/2 - 1/3 +..........+ 1/99 - 1/100

B = 1 - 1/100

B = 99/100 nhé!

Nhân
18 tháng 4 2016 lúc 18:19

B=\(\frac{99}{100}\)

Nguyen quang khai
Xem chi tiết
Nguyễn Thị Hiền
20 tháng 7 2016 lúc 23:09

1/2+1/6+1/12+...+1/9900
=1/(1*2)+1/(2*3)+1/(3*4)+...+1/(99*100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100

=99/100

Trà My
20 tháng 7 2016 lúc 23:14

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

0o0_ Nguyễn Xuân Sáng _0...
21 tháng 7 2016 lúc 7:10

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)

kudo shinichi
Xem chi tiết
Trần Thị Kim Ngân
7 tháng 6 2016 lúc 19:09

Giải 

\(A=1+2+3+4+5+...+99+100\)

Số số hạng của A là: \(\left(100-1\right)\div1+1=100\)(số hạng)

Tổng A là: \(\frac{\left(100+1\right)\times100}{2}=5050\)

Vây A=5050

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(B=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(B=\frac{99}{100}\)

ghsjhsjsh
7 tháng 6 2016 lúc 19:12

minh cam thay de hoi sai

Trần Quỳnh Mai
7 tháng 6 2016 lúc 19:15

A = 1 + 2 + 3 + ... + 99 + 100

A = 100 + 99 + ... + 2 + 1

2A = 101 + 101 +... + 101 + 101 ( 100 số hạng )

A = 101 . 100 : 2 = 5050

Vậy A = 5050 

B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/9900

B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100

B = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

B = 1/1 - 1/100

B = 99/100

Vậy B = 99/100

Nguyễn Quỳnh Như
Xem chi tiết
Lê Quang Thế
4 tháng 1 2015 lúc 12:33

T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100

  = 1 - 1/100

  = 99/100