Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị ngọc ánh
Xem chi tiết
aiahasijc
2 tháng 3 2016 lúc 19:38

bạn thử bấm -5/2 thử xem

Bùi Hải Đoàn
Xem chi tiết
alibaba nguyễn
10 tháng 1 2017 lúc 6:01

\(x+\frac{1}{x}=3\)

Ta bình phương 1 vế được

\(x^2+2+\frac{1}{x^2}=9\Leftrightarrow x^2+\frac{1}{x^2}=7\)

Lập phương 2 vế được

\(x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=27\)

\(\Leftrightarrow x^3+\frac{1}{x^3}=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18\)

\(\Leftrightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\)

\(\Leftrightarrow x^5+\frac{1}{x^5}=123\)

Phạm Minh Thành
Xem chi tiết
khoi my
Xem chi tiết
Huy Hoàng
14 tháng 4 2018 lúc 22:58

Ta có \(\left|x+1\right|\ge0\)với mọi giá trị của x

và \(\left|x-2018\right|\ge0\)với mọi giá trị của x

=> \(\left|x+1\right|+\left|x-2018\right|\ge0\)với mọi giá trị của x

Vậy GTNN của A là 0.

Pham To Uyen
14 tháng 4 2018 lúc 22:41

Gtnn của A  là 2017

Ngô Duy Phúc
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
Vũ Thị Ngọc Thơm
Xem chi tiết
super xity
Xem chi tiết
Phước Nguyễn
11 tháng 1 2016 lúc 9:23

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

Thị Thanh Nguyễn
Xem chi tiết