Tím x, y sao cho:
x +( \(\frac{-31}{12}\))2 = (\(\frac{49}{12}\))2 - x = y2 vs y > 0
Tìm x, y:
\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
Xét \(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Rightarrow2x=\left(\frac{49}{12}\right)^2-\left(\frac{-31}{12}\right)^2=\frac{2401}{144}+\frac{961}{144}\)
\(\Rightarrow2x=\frac{3362}{144}\)
\(\Rightarrow x=\frac{3362}{144}.\frac{1}{2}=\frac{1681}{144}\)
Ta lai xét :
\(x+\left(\frac{-31}{12}\right)^2=y^2\)
\(\Rightarrow\frac{1681}{144}+\frac{-961}{144}=y^2\)
\(\Rightarrow\frac{720}{144}=y^2\)
\(\Rightarrow y^2=5\)
\(\Rightarrow y=2,236067977\)
Tìm x;y biết
\(x+\left(-\frac{31}{12}\right)^2\left(\frac{49}{12}\right)^2-x=y\)
\(x+\left(\frac{-31}{12}\right)^2\left(\frac{49}{12}\right)^2-x=y\)
\(x+\frac{961}{144}.\frac{2401}{144}-x=y\)
\(x+\frac{2307361}{20736}-x=y\)
\(y=\frac{2307361}{20736}\)
Thay vào \(x+\frac{961}{144}.\frac{2401}{144}-x=y\) ta được
\(x+\frac{2307361}{20736}-x=y\)
\(x-x+\frac{2307361}{20736}=\frac{2307361}{20736}\)
Vậy x thuộc N;\(y=\frac{2307361}{20736}\)
\(\Leftrightarrow\left(x-x\right)+\frac{961}{144}\cdot\frac{2401}{144}=y\Leftrightarrow y=\frac{2307361}{20736}\)
\(\Rightarrow x\in R\)
( hình như đề sai :v )
\(x+\frac{-31}{12}^2=\frac{49}{12}^2-x=y^2\)
Tìm x,y
Tìm x;y biết rằng:
\(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
X+(-31/12)^2 = (49/12)^2 -x=y
(-31/12)^2 - (49/12)^2 = -x-x = y
961/144 - 2410/144 = -2x
-10=-2x
10=2x
10:2=x
5=x
X+961/144=y^2
5+961/144=y^2
1681/144=y^2
=>y=41/144
Dấu phân số mình ký hiệu là / đó nha
tìm x,y biết
\(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
Bài 2 Tìm x,y : \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
\(x+\left(-\frac{31}{12}\right)^2=\left(-\frac{49}{12}\right)^2-x=y^2\)
Tìm x và y , Giúp tớ nha .
\(x+\left(\frac{-31}{12}\right)^2=\left(-\frac{49}{12}\right)^2-x=y^2\)
\(\Rightarrow x+\frac{31^2}{12^2}=\frac{49^2}{12^2}-x=y^2\) (1)
\(\Rightarrow x+x=\frac{49^2}{12^2}-\frac{31^2}{12^2}\)
\(\Rightarrow2x=\frac{49^2-31^2}{12^2}\)
\(\Rightarrow2x=\frac{\left(49-31\right).\left(49+31\right)}{144}\)
\(\Rightarrow2x=\frac{18.80}{144}\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=10:2=5\)
Thay \(x=5\) vào (1) ta có:
\(5+\frac{31^2}{12^2}=y^2\)
\(\Rightarrow5+\frac{961}{144}=y^2\)
\(\Rightarrow\frac{1681}{144}=y^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=\frac{41}{12}\\y=\frac{-41}{12}\end{array}\right.\)
Vậy \(x=5;y\in\left\{\frac{41}{12};\frac{-41}{12}\right\}\)
Tìm x,y biết
\(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
I.tìm x và y biết rằng: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
Vì
\(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\Rightarrow2x=\left(\frac{49}{12}\right)^2-\left(-\frac{31}{12}\right)^2=10\)
=> 2x = 10 => x = 5
Thay x = 5 vào ta có :
\(5+\left(-\frac{31}{12}\right)^2=y^2\Leftrightarrow\frac{1681}{144}=y^2=\left(\frac{41}{12}\right)^2=\left(-\frac{41}{12}\right)^2\)
=> y = 41/12 hoặc y = -41/12
Tìm x,y
x*(x-y)=3/10 và y*(x-y)=–3/20