Giá trị \(P=\frac{2x+5y}{x-2y}\) . \(x>y>0\) và \(x^2+3y^2=4xy\)
cho x,y thỏa mãn x>y>0 và x2 +3y2=4xy
tìm giá trị A=\(\frac{2x+5y}{x-2y}\)
\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)
\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A
\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
Cho \(x>y>0\) và \(x^2+3y^2=4xy\). Tính giá trị của biểu thức: \(A=\frac{2x+5y}{x-2y}\)
Ta có x2 + 3y2 = 4xy
=> x2 - 4xy + 3y2 = 0
=> x2 - xy - 3xy + 3y2 = 0
<=> x(x - y) - 3y(x - y) = 0
<=> (x - 3y)(x - y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Ta có x - y > 0 (vì x > y > 0) => x - y = 0 loại
Ta có : x - 3y = 3x - 3y - 2y = 3(x - y) - 2y \(\le\) 0 (vì x - y > 0 ; y > 0)
=> x - 3y = 0 tm
Khi đó x = 3y
Với x = 3y => A = \(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
gt của p =\(\frac{2x+5y}{x-2y}\)biết x>y>0 và x^2+3y^2=4xy
x/y+3.y/x=4
đặt b=y/x<1
1/b+3b=4
3b^2-4b+1=0
b=1loia
b=1/3
(2+5b)/(1-2.b)
\(P=\frac{2+5.\frac{1}{3}}{1-2.\frac{1}{3}}=\frac{\frac{11}{3}}{\frac{1}{3}}=11\)
11 nha bạn
Chúc các bạn học giỏi
Tết vui vẻ nha
Cho x>y>0 và x^2 + 3y^2 =4xy
Tính A= (2x+5y) / (x-2y)
Giá trị của P = \(\frac{2x+5y}{x-2y}\)x > y > 0 và x2 + 3y2 = 4xy
Ghi cách giải ra giúp mình nha các bạn. Giải thích được thì càng tốt. Mình Cảm ơn. Cho mình hỏi luôn cách tính nhanh giá trị như thế này được không vậy ?
ta co x2+3y2=4xy suy ra x2+3y2-4xy=0 suy ra x2-xy-3xy+3y2=0 suy ra x(x-y)-3y(x-y)=0 suy ra (x-3y)(x-y)=0
với x-y=0 suy ra x=y mà theo đề bài x>y>0 suy ra x-3y=0 suy ra x=3y thay vào P là xong
Ban coi co dung khong nha
Bạn thay như thế nào thế ? Bạn làm luôn được không ?
mình thấy không khó lắm cũng đơn giản mà mình giải được luôn đấy hôm qua lúc bạn lên thì mình đi ngủ rồi hì
Cho x , y thỏa mãn x > y > 0 và x2 + 3y2 =4xy . Tính \(A=\frac{2x+5y}{x-2y}\) .
Cho x,y thỏa mãn x>y>0 và x2+3y2=4xy. Tính A=\(\frac{2x+5y}{x-2y}\)
Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)
Giá trị của P=\(\frac{2x+5y}{x-2y}\)với x>y>0 và x2+3y2=4xy
\(x^2+3y^2=4xy\)
\(x^2+4y^2-y^2-4xy=0\)
\(\left(x-2y\right)^2-y^2=0\)
\(\left(x-3y\right)\left(x-y\right)=0\)
=> x=3y hoặc x=y
Mà ta có x>y>0 => Trường hợp x=y loại
x=3y(Nhận)
Thay x=3y vào biểu thức ta có:
P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
cho x,y thảo mãn x^2 + 3y^2 = 4xy. Tính giá trị của biểu thức A= \(\frac{2x+3y}{x-2y}\)
Ta có : \(x^2+3y^2=4xy\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)
Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)
Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)
Ta có:
\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)
TH1: x=3y
\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)
TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)
cảm ơn 2 bạn rất nhiều, mình rất muôn bình chọn cho cả 2 nhưng rất tiếc chỉ được 1 bạn. thực ra mình định bình chọn cho bạn làm đầu tiên nhưng mình lại lỡ ấn mất rồi. cho mình xin lỗi nha