D=150-(100-99+98-97+...-3+2-1)
D=150-(100-99+98-97+...-3+2-1)
Rút gọn:
A = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
B = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
A = 2100 - 299 + 298 - 297 + ...+ 22 - 2
2.A = 2101 - 2100 + 299 - 298 + ...+ 23 - 22
A + 2.A = 2101 - 2 => 3.A = 2101 - 2 => A = (2101 - 1) / 3
B : tương tự
1:\(\frac{99}{100}:\frac{98}{99}:\frac{97}{98}:...:\frac{2}{3}:\frac{1}{2}\)
Tính nhanh
a, 1-2+3-4+.....+2015-2016+2017
b,1+3-5-7+9+11+....+97-98-99+100+101
c,1-2-3+4+5-6-7+....+97-98-99+100+101
d,2^100-2^99-2^98-....-2-1
Nhanh nha m dang cần gấp
Tính:\(\left|-100-99-98-97-96-1+1+2+3+...+99\right|\)
= l ( 99 + -99 ) + ( -98 + 98 ) +... + (-1+ 1 ) + -100l
= l 0 + 0 + .. + 0 + -100 l
= l -100l
= 100
= 1 ( 99 + -99 ) + ( -98 + 98 ) + .......... + ( -1 + 1) + -1001
= 1 0 + 0 + ...... + -1001
= 1 - 1001
= 100
Tính: \(\frac{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}\)
\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)
\(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)
Tính:
a)(100+54).178+(200-22).8.46
b)1+3+5+...+97+99
c)150-40.20.5.0,5.0,25.0,2-50/1+2+3+...+98+99+100
b) Dãy số trên có số số hạng là:
( 99 - 1 ) : 1 + 1 = 99 ( số hạng )
Tổng trên là:
( 99 + 1 ) x 99 : 2 = 4950
Đáp số: 4950
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}+100}=?\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)
\(=\frac{1}{100}\)
\(1+2+3+4+...+97+98+99+100\)
Tổng của 1 + 2 + 3 + 4 + ..... + 97 + 98 + 99 + 100 là"
( 1 + 100 ) x100 : 2 = 5100
Số các số là:
100 - 1 + 1 = 100 (số)
Tổng trên là:
(100 + 1) x 100 : 2 = 5050
Đáp số: 5050