Cho \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và x+z=2y
Tìm số giá trị của(x;y;z)
Tìm x,y,z biết:
:\(\frac{2x-y}{5}=\frac{3y-2z}{15}\)và x+z=2y
1.
a. Cho \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị của mỗi tỉ số
b. Tìm x,y,z biết: \(\frac{2x-y}{5}=\frac{3y-2z}{15}\)và \(x+z=2y\)
Tìm x,y,z biết :
\(\frac{2x-y}{5}+\frac{3y-2z}{15}\) và x+z=2y
tìm x,y,z biết :\(\frac{2x-y}{5}\)=\(\frac{3y-2z}{15}\)và x+z=2y.
\(\frac{2x-y}{5}=\frac{3y-2z}{15}=\frac{2x-y-3y+2z}{5-15}=\frac{2\left(x+z\right)-4y}{-10}=\frac{4y-4y}{-10}=0\)
=>\(2x-y=3y-2z=0\)
Tìm x,y,z biết:\(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và x+z=2y
Tìm x,y,z biết
\(\frac{2x-y}{5}=\frac{3y-2z}{15}\)
và x+z=2y
Từ x+y = 2y ta có :
x - 2y + z = 0 hay 2x - 4y + 2z = 0 hay 2x - y - 3y + 2z = 0 hay 2x - y = 3y - 2z
Vậy nếu \(\frac{2x-y}{5}=\frac{3y-2z}{15}\)thì: 2x - y = 3y - 2z = 0 ( do 5 khác 15).
Từ 2x - y = 0 suy ra : x = 1/2y
Từ 3y - 2z = 0 và x + z = 2y suy ra : x + y + z - 2z = 0 hay 1/2 y + y - z =0
hay 3/2 y - z = 0 hay y = 2/3 z.Suy ra: x = 1/3 z.
Vậy các số cần tìm là : { x = 1/3 z, y=2/3 z với z thuộc R} hoặc {x=1/2 y, y thuộc R, z = 3/2 y} hoặc {x thuộc R, y=2x, z=3x}
Bn vào câu hỏi tương tự nhé!Nếu ko có thì bn lên mạng nha!!!!!!
K mk nhé!
thanks!
haha!!!
a) Cho \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị của mỗi tỉ số.
b) Tìm x, y, z biết: \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và \(x+z=2y\).
a) Giải:
Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)
Tìm x,y,z biết :
a, \(\frac{x}{3}=\frac{y-5}{7}=\frac{z+2}{3}\) và x+2y=52
b, \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và x+z=2y
Mik giải đc bài dưới thui ạ
Từ x + z = 2y ta có:
x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z
Vậy nếu: 2x−y5=3y−2z152x−y5=3y−2z15 thì: 2x – y = 3y – 2z = 0 (vì 5 ≠≠ 15.)
Từ 2x – y = 0 suy ra: x = 12y12y
Từ 3y – 2z = 0 và x + z = 2y. ⇒⇒ x + z + y – 2z = 0 hay 12y12y+ y – z = 0
hay 32y32y - z = 0 hay y = 23z23z. suy ra: x = 13z13z.
Vậy các giá trị x, y, z cần tìm là: {x = 13z13z; y = 23z23z ; với z ∈∈ R }
hoặc {x = 12y12y; y ∈∈ R; z = 32y32y} hoặc {x ∈∈ R; y = 2x; z = 3x}
a) Cho \(\frac{a}{2b+c}\) =\(\frac{b}{2c+a}\) =\(\frac{c}{2a+b}\) (a,b,c >0). Tính giá trị của mỗi tỉ số
b)TÌm x,y,z biết \(\frac{2x-y}{5}\) =\(\frac{3y-2z}{15}\) và x + z = 2y