the value of \(x^4+\frac{1}{x^4}\)when \(x+\frac{1}{x}=3\)
Given that
\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}=\frac{a}{x^{32}-1}\)
for all \(x\ne-1;1\).What is the value of a ?
let P(x) be a polynomial of degree 3 and x1, x2, x3 are the solutions of P(x)=0. let \(\frac{P\left(\frac{1}{3}\right)-P\left(\frac{-1}{3}\right)}{P\left(0\right)}=8,\frac{P\left(\frac{1}{4}\right)-P\left(\frac{-1}{4}\right)}{P\left(0\right)}=9\)and x1+x2+x3 = 35. find the value of \(\frac{x2+x3}{x1}+\frac{x1+x3}{x2}+\frac{x1+x2}{x3}\)
The value of x such that \(1\frac{1}{4}x+\frac{1}{3}=\frac{6}{15}\) is
(round to three decimal places)
Find the value of x:
3|1-2x| + 2|\(\frac{1}{4}-\frac{1}{2}x\)| = \(3^2-2^2\)
|3 - 6x| + |1/2 - x| = 5
=> 3 - 6x+1/2 - x = 5
=> -7x + 7/2 = 5
=> -7x = 3/2
=> x = -3/14
Chắc chắn đúng! Bạn thay kết quả của mình vào câu hỏi là biết
Tick nha!
given 1<x<3., Find the value of \(A=\frac{\left|x-3\right|}{x-3}-\frac{\left|x-1\right|}{1-x} +\left|x-1\right|+\left|3-x\right|\)
Answer:A=...........
Lời giải:
Vì \(1< x< 3\Rightarrow \left\{\begin{matrix}
|x-3|=|3-x|=3-x\\
|x-1|=x-1\end{matrix}\right.\). Khi đó:
\(A=\frac{|x-3|}{x-3}-\frac{|x-1|}{1-x}+|x-1|+|3-x|\)
\(=\frac{3-x}{x-3}-\frac{x-1}{1-x}+x-1+3-x\)
\(=-1-(-1)+2=2\)
Vậy giá trị của $A$ là $2$
Find the value of the remainder of the division
\(\left(7x-2x^3+4x^4-5\right):\left(x^2+2\right)\)with \(x=\frac{-1}{11}\)
Answer: The value of the remainder is ....
Nhah nha đag cần gấp
The smallest value of \(\frac{x-y}{x^4+y^4+6}\) is.............
the value of x such that \(1\frac{4}{5}\)x +\(\frac{1}{3}\)=\(\frac{6}{15}\) is ....
( round to three decimal places )
\(\frac{1}{27}\)(one part twenty-seven)
tick me !!!
The value of such that \(3.\left(\frac{1}{7}-\frac{3}{21}+\frac{7}{3}\right)<\frac{x}{2}<\frac{13}{8}.\left(\frac{1}{2}-\frac{1}{6}\right)\)
Answer: x =