Given that a^2-b^2=1. Evaluate: A=2(a^6-b^6)-3(a^4-b^4)
given that a^2-b^2 =1 evaluate A=2(a^6-a^6)-3(a^4+a^4)
find the remainder in the division ò x^30+x^4-x^1975+1 by x-1
Đa thức chia x-1 có ngiệm là 1 nên:
Thay x=1 vào đa thức chia ta có:
130+14-11975+1
=1+1-1+1
=2
Vậy số dư khi chia khi chia x30+x4-x1975+1 cho x-1 là 2
given that x^3-x=7. evaluate A=x^6-2x^4+x^3+x^2-x
1.Given that a & b= (a+b)(a-c).Evaluate: 4 & 3
Given that\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\) .Evaluate \(a+b\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\Rightarrow a=-2;b=5\)
\(\Rightarrow\)\(a+b=-2+5=3\)
Given that a & b=(a+b)(a-b). Evaluate: 4&3.
Answer: 4&3=...........
We know that a & 3 = (a+b)(a-b); therefore, 4 & 3 = (4-3)(4+3) = 7
Evaluate the expression at
Fill in the blank: ............
Fill in the blank: Fill in the blank:Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Fill in the blank: (x - 1)3 = x3 - 3x2 + 3x - 1 Fill in the blank: (x + 1)3 = x3 + 3x2 + 3x + 1a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Given the polynomial P= x^2 + ax +b. Find the values of a and b such that b has 2 roots that are 2 and 3.
a= -5 and b = -1
a= -1 and b = -6
a= 1 and b = 1
a= -5 and b = 6
(giải giùm mình nha các bạn)
Evaluate (a+b)2 , given a-b=8 and ab=10 .
Answer:
giải
Ta có : \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Với \(a-b=8\)và \(ab=10\)
\(\Rightarrow\left(a+b\right)^2=8^2+4\times10\)
\(=104\)
Tìm cặp bằng nhau
the fraction a/b such that a +b =2015 | 3/4-1/6 | the fraction a/b such that a+b=2015 | 1/3+1/5-1/4 |
2/15-1/10 | 1/4+1/14 | 1/2+1/3+1/4 | 1/2-1/15 |
the number of the fraction a/b such that a+b=2014 | the greatest fraction a/b such that a-b=2014 | 1/3+1/10 | 7/10-2/3+1/4 |
3/4-3/7 | 5/6+1/4 | 1/3+1/2-1/4 | 1/2+1/5+1/4 |
1/5-1/6 | 1/4+7/10 | 3/10+3/20 | 1/5+1/4 |