Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lyzimi
Xem chi tiết
alibaba nguyễn
26 tháng 1 2017 lúc 17:48

\(\sqrt{2002+x^2}=2002-x^4\)

\(\Leftrightarrow x^8-4004x^4-x^2+4006002=0\)

\(\Leftrightarrow\left(x^4-x^2-2002\right)\left(x^4+x^2-2001\right)=0\)

Làm tiếp nhé

Nguyễn Minh Tuấn
Xem chi tiết
alibaba nguyễn
28 tháng 7 2017 lúc 14:09

\(x^4+\sqrt{x^2+2002}=2002\)

Đặt \(\sqrt{x^2+2002}=a^2>0\)

\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(x^4-a^4+x^2+a^2=0\)

\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)

\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)

\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)

\(\Leftrightarrow x^4+x^2-2001=0\)

Tới đây thì đơn giản rồi

alibaba nguyễn
28 tháng 7 2017 lúc 14:15

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)

erffsdaseefd
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Hung nguyen
16 tháng 11 2017 lúc 9:13

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x^2-x+2001}=a\\\sqrt[3]{3x^2-7x+2002}=b\\\sqrt[3]{6x-2003}=c\end{matrix}\right.\)

\(\Rightarrow a^3-b^3-c^3=2002\) từ đây ta có:

\(a-b-c=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-b-c\right)^3=\sqrt[3]{a^3-b^3-c^3}\)

\(\Leftrightarrow\left(a-c\right)\left(a-b\right)\left(b+c\right)=0\)

Tự làm nốt nhé

Hung nguyen
15 tháng 11 2017 lúc 9:29

Xem lại đề nhé bạn: \(\sqrt[3]{6x-2003}\) mới đúng chứ nhỉ?

bùi drangon2019
15 tháng 11 2017 lúc 11:42

a picece of cake

toán khó mới hay
Xem chi tiết
Lê Anh Tú
16 tháng 3 2018 lúc 20:38

Đặt \(A=\sqrt{x^2+2002}\)thì \(a^2=x^2+2002\Leftrightarrow a^2-x^2=2002\)

pt: \(\Leftrightarrow x^4+a=a^2-x^2\Leftrightarrow x^4-a^2+x^2+a=0\Leftrightarrow\left(x^2-a\right)\left(x^2+a\right)+\left(x^2+a\right)=0\)

\(\Leftrightarrow\left(x^2+a\right)\left(x^2-a+1\right)=0\)

\(x^2>0;a\ge\sqrt{2002}\)nên: \(x^2-a+1=0\Leftrightarrow x^2+1=\sqrt{x^2+2002}\)

Do 2 vế đều không âm nên ta bình phương 2 vế:\(x^4+2x^2+1=x^2+2002\Leftrightarrow x^4+x^2-2001=0\)

Tới đây pt trùng phương giải tiếp đi bn.

toán khó mới hay
Xem chi tiết
Luyện Nguyễn Khắc
Xem chi tiết
Phan Văn Hiếu
4 tháng 9 2017 lúc 21:16

\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)

\(\frac{x^2\left(x^2+2002\right)+x^4\sqrt{x^2+2002}}{2001}=2002\)

\(x^2\sqrt{x^2+2002}\left(\sqrt{x^2+2002}+x^2\right)=2002.2001\)

đặt x^2+2002=a

a-2002=x^2

pt \(\left(a-2002\right)\sqrt{a}\left(\sqrt{a}+a-2002\right)=2002.2001\)

Tiên Thị Mỹ Tâm
Xem chi tiết
alibaba nguyễn
28 tháng 2 2017 lúc 10:37

Đặt \(\sqrt[3]{3x^2-x+2001}=a;-\sqrt[3]{3x^2-7x+2002}=b;-\sqrt[3]{6x-2003}=c\)

Thì ta có được hệ: \(\hept{\begin{cases}a+b+c=\sqrt[3]{2002}\\a^3+b^3+c^3=2002\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Với  a = - b thì

\(\sqrt[3]{3x^2-x+2001}=\sqrt[3]{3x^2-7x+2002}\)

\(\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)

\(\Leftrightarrow6x=1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Tương tự cho 2 trường hợp còn lại 

tuan va manh
28 tháng 2 2017 lúc 11:11

\(\Leftrightarrow\)x=\(\frac{1}{6}\)

mặt trời xanh
28 tháng 2 2017 lúc 20:57

giải giúp mk bài này hoặc đăng hộ mk vs các pạn. mk đăng lên, ấn tải thế là nó hiện cái câu hỏi tương tự rôi cứ ấn như thế mãi ko đk

Gọi O là giao điểm của hai đường chéo AC, BD của hình thang ABCD với đáy lớn là CD. Các đường thẳng kẻ từ A, B song song với AC, BD cắt các đường chéo AC, BD tại E, F.

a) Chứng minh tứ giác ABFE là hình thang.

b) Chứng minh AB2=ÈF.CD

c) S1,S2,S3,S4 là diện h các tam giác OAB, OCD, OAD VÀ OBC. Chứng minh S1.S2=S3.S4

d) đường thẳng qua O song song với AB cắt AD, BC tại M,N. Chứng minh 1/AB+1/CD=2/MN

Trần Đạt
Xem chi tiết
Neet
4 tháng 9 2017 lúc 0:06

\(Pt\Leftrightarrow2002x^4+x^4\sqrt{x^2+2002}+x^2-2002.2001=0\)

\(\Leftrightarrow x^4\left(\sqrt{x^2+2002}+2002\right)+x^2-2002.2001=0\)

\(\Leftrightarrow\dfrac{x^4}{\sqrt{x^2+2002}-2002}\left(x^2+2002-2002^2\right)+\left(x^2-2001.2002\right)=0\)

\(\Leftrightarrow\left(x^2-2001.2002\right)\left(\dfrac{x^4}{\sqrt{x^2+2002}-2002}+1\right)=0\)

Done !