Cho A=/x+5/+2-x
a.Rút gọn biểu thức A
b.Tìm GTNN của A
Cho biểu thức: A=(x-2)(x+2)-(x-1)(x^2-2x+1)-x^2(4-x)
a.Rút gọn biểu thức.
b.Tìm giá trị của x để biểu thức A có giá trị bằng 0.
a) Đề phải là: \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2+2x+1\right)-x^2\left(4-x\right)\) chứ bạn
\(\Rightarrow A=x^2-2^2-\left(x^3-1\right)-4x^2+x^3\)
\(=x^2-4-x^3+1-4x^2+x^3\)
\(=-3x^2-3=-3\left(x^2+1\right)\)
b) A = 0 \(\Leftrightarrow-3\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Vì \(x^2\ge0\left(\forall x\right)\) \(\Rightarrow x\in\varnothing\)
Vậy x vô nghiệm nếu A có giá trị bằng 0
P/s: không chắc lắm
a) \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2-2x+1\right)-x^2\left(4-x\right)\)
=> \(A=x^2-4-\left(x-1\right)^3-4x^2+x^3\)
=> \(A=x^2-4-x^3+3x^2-3x+1-4x^2+x^3\)
=> \(A=-3x-3\)
b) Cho A=0
=> \(A=-3x-3=0\)
=> \(-3x=3\)
=> \(x=-1\)
Cho biểu thức :
A=\(\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a.Rút gọn biểu thức A
b.Tìm x để A>0
ĐKXĐ: x\(\ne\)1, x\(\ne\)-1
MTC (x-1)(x+1)
\(\Leftrightarrow\)(\(\frac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)+ \(\frac{2\left(x-1\right)}{MTC}\)-\(\frac{-\left(5-x\right)}{MTC}\)) : \(\frac{1-2x}{MTC}\)
\(\Rightarrow\)\(\left[-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)\right]:\left(1-2x\right)\)
\(\Leftrightarrow\frac{-x-1+2x-2+5-x}{1-2x}\)
=\(\frac{-2x+2x+2}{1-2x}\)
=\(\frac{2}{1-2x}\)
b. mình chỉ biết \(x< \frac{1}{2}\) thôi chứ ko biết làm sao
hình như là giải Bất phương trình \(\frac{2}{1-2x}>0\)
cho phân thức A=\(\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
a.rút gọn A
b.tìm x để A=4
a, Rút gọn :
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{1\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x-5+2x+10-2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\frac{x+15}{\left(x+5\right)\left(x-5\right)}\)
3 phút trước (13:18)
Kb đi buồn quá
Toán lớp 1Cho biểu thức : A= ( 3/2x+4 + x/2-x + 2x^2+3/x^2-4 ) : (2x-1/4x-8)
a.Rút gọn A
b.Tìm giá trị của A biết |x - 1| = 3
c.Tìm x để A < 2
d.Tìm x để A = |1|
Cho biểu thức : A= ( 3/2x+4 + x/2-x + 2x^2+3/x^2-4 ) : (2x-1/4x-8)
a.Rút gọn A
b.Tìm giá trị của A biết |x - 1| = 3
c.Tìm x để A < 2
d.Tìm x để A = |1|
P=2x^2-1/x^2+x-x-1/x+3/x+1 a.Rút gọn P b.tìm x để P=0 c.tính giá trị của biểu thức P khi x thoả mãn x^2-x=0
\(a,P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\left(x\ne0;x\ne-1\right)\\ P=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\\ b,P=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(tm\right)\\ c,x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=1\left(x\ne0\right)\\ \Leftrightarrow P=\dfrac{1+3}{1+1}=\dfrac{4}{2}=2\)
Cho biểu thức P=\(\frac{2\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)với \(x\ge0;x\ne4;x\ne9\)
a.Rút gọn biểu thức P
b.Tìm x để P=5
1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)
a.Rút gọn biểu thức A.
b. Tính giá trị của biểu thức A khi x=4.
2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1
3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2
4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)
a. Rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).
5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)
a. Rút gọn biểu thức M
b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)
MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
a.Rút gọn biểu thức (tìm ĐKXĐ)
b.Tìm giá trị của x để A>0
c.Tính giá trị của A trong TH: \(\left|x-7\right|=4\)
a,\(ĐKXĐ:\hept{\begin{cases}x\ne\mp2\\x\ne3\\x\ne0\end{cases}}\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left[\frac{\left(x+2\right)^2}{\left(2-x\right)\left(x+2\right)}+\frac{4x^2}{\left(2-x\right)\left(x+2\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}\right]:\left[\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right]\)
\(=\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x\left(x+2\right)}{x+2}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
cho A=\(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
a.rút gọn A
b.Tìm x để A=4
A= \(\frac{3\left(x-3\right)+\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{18}{\left(9-x^2\right)}\)
A= \(\frac{3x-9+x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{x^2-9}\)
A=\(\frac{3x+x-9+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
A=\(\frac{4}{\left(x-3\right)}\)
để A=4
=> \(\frac{4}{x-3}=4\)
<=> x-3=1
<=> x=4
a, Rút gọn :
\(A=\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
\(A=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{1\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{4}{x-3}\)
b, Để A = 4
\(\Leftrightarrow\frac{4}{x-3}=4\)
\(\Leftrightarrow4\left(x-3\right)=4\)
\(\Leftrightarrow4x-12=4\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
Vậy để a = 4 thì x = 4
cho Q=3xy(x+3y)-2xy(x+4y)-x^2(y-1)+y^2(1-x)+36
a.Rút gọn
b.tìm cặp số (x,y) để Q đặt GTNN và GTNN đó
làm ơn giúp mình . chỉ cần con b thôi