Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 16:45

Cách 1:  P= ab.bc.ca/11.(a+b+c) --> ab.bc.ca = 3^4 .41.(a+b+c) 

ab+bc+ca=10a+b+10b+c+10c+a=11(a+b+c) .

Nếu vế trái là P thìta có:

 P=ab.bc.ca/11.(a+b+c) =3321/11 .

Đơn giản hóa và nhân chéo ta được ab.bc.ca=3321. (a+b+c) . 3321= 41 .3^4. 41 Một là số nguyên tố nên các số bên trái phải có số chia hết cho 41.

nhưng các số này là các số có 2 chữ số, vậy số chia hết cho 41 chỉ có thế là 41 và 82.

Gọi cho ab là số chia hết cho 41. Khi đó có hai trường hợp: ab=41 do đó a=4; b=1 và trường hợp 2: ab=82 do đó a=8; b=2.

Trường hợp a=4; b=1 thì khi đó

41× bc×ca=41.3^4.(a+b+c)

--> (10+c)(10c+4)=3^4(4+1+c)=3^4(5+c).

Vì bên trái chẵn nên c phải lẻ.

C=5

Trường hợp 2, cũng làm tương tự a=8; b=2 không có nghiệm.

Đáp số a=4; b=1; c=5.

Cách 2:

Nhân cả hai vế với (ab+bc+ca)x11 ta được:

abxbcxcax11=(ab+bc+ca) x3321.

phân tích:

ab+bc+ca= a x 11 + b x11 + c x11

= (a + b +c)x 11.

Vậy abxbcxcax11 = (a + b + c)x11X3321.

Chia cả hai vế cho 11 ta được

ab x bc xca= ( a + b+c)x 3321.

Ta thấy 3321 :3:3:3:3=41 (hay 3321:81=41)

Vậy abxbcxca= (a+b+c) x81x41.

Vì 41 không chia được cho số nào khác 1, còn 81 chia hết được cho 3, 8, 27 nên ab, bc, ca bắt buộc một trong ba số phải có 1 số là 41 hoặc 41x2=82 (41x3 trở đi không được vì thành số có 3 chữ số)

Xét: nếu 1 trong ba số là 41, thì hai số còn lại, 1 số có hàng đơn vị là 4, 1 số có hàng chục là 1. mặt khác ta phân tích 81 thành 9x9 hoặc 27x3

Ta có 9x2=18, 9x9= 81, vậy 3 số là 18, 81, 41 (loại, vì không thành dạng ab, bc, ca)

Ta có: 27x 2= 54; 3x4=12, 3x5=15, 3x6= 18, xét 3 cặp số 54, 41, 12 và 54, 41, 15 và 54, 41, 18 thì chỉ cặp 3 số 54, 41, 15 thỏa mãn dạng ab, bc,ca. Thử lại ta thấy thỏa mãn.

Nếu 1 trong 3 số là 82 thì hai số còn lại 1 số có hàng đơn vị là 2, một số có hàng chục là 8. ta thấy 9x9=81, số còn lại là 88, mà 88 không chia hết cho 9. nếu 27 x3=81; thì 3x4, 3x5, 3x6 thì tạo ra các cặp số không thỏa mãn đề bài.

 3 chữ số cần tìm là 5,1,4

Nguyễn Bích Ngọc
Xem chi tiết
Nguyễn Thị Khánh Huyền
4 tháng 1 2016 lúc 15:44

Đầu tiên nhận xét a,b,c € N và a,b,c ≤ 9 

→ Giả sử a,b,c có một số bằng 0. 
Vai trò a,b,c như nhau, không mất tính tổng quát giả sử a = 0 thì: 
gt <=> bc = 0 
<=> b = 0 hoặc c = 0 
Tức là sẽ có 2 nghiệm: (0,0,c) hoặc (0,b,0) (b,c ở đây tùy ý) 
Tóm lại, trường hợp này có 3 bộ số thỏa mãn là: (a,0,0); (0,0,c) hoặc (0,b,0) 
với a,b,c trong mỗi bộ là là các chữ số tùy ý từ 0 → 9. Thay số mỗi bộ chạy từ 1 → 9 thì ta có mỗi họ nghiệm trên có 9 nghiệm => có 9.3 = 27 nghiệm 
Cộng thêm 1 bộ (0,0,0) chung nữa là có tất cả 28 nghiệm cho trường hợp này.

→ Nếu a,b,c đều khác 0: 
Chia cả 2 vế gt cho abc đc: 
1/a + 1/b + 1/c = 1 (♦) 
Từ (♦) suy ra a,b,c ≥ 2 vì nếu một trong 3 số bằng 1, giả sử a = 1 thì: 
1 + 1/b + 1/c = 1 <=> 1/b + 1/c = 0 (vô lý) 
Do đó ta giả sử tiếp 
2 ≤ a ≤ b ≤ c thì: 1/a ≥ 1/b ≥ 1/c 
=> 1 = 1/a + 1/b + 1/c ≤ 3/a 
=> 3 ≥ a ≥ 2 

***Nếu a = 2: 1/b + 1/c + ½ = 1 <=> 1/b + 1/c = ½ (♥) 
=> ½ = 1/b + 1/c ≤ 2/b 
=> b ≤ 4 
Do b > 2 (b = 2 thì (♥) <=> ½ + 1/c = ½ → vô lý) nên b = 3 hoặc b = 4 
+ Với b = 3 thì 1/c + 1/3 = ½ <=> c = 6 
Ta được cặp (2,3,6) thỏa mãn 
+ Với b = 4 thì 1/c + 1/4 = ½ <=> c = 4 
Ta đc cặp (2,4,4) thỏa mãn 

***Nếu a = 3 thì: 
1/b + 1/c = 2/3 
=> 2/3 = 1/b + 1/c ≤ 2/b 
=> b ≤ 3 => mà do b ≥ a = 3 nên chỉ có thể là b = 3 
Thay vào được c = 3 
Trường hợp này ta chỉ có một cặp (3,3,3) 

Tóm lại trường hợp a,b,c > 0 ta có 10 cặp sau thỏa mãn: 
(3,3,3); (2,4,4); (4,2,4); (4,4,2); (2,3,6); (2,6,3); (3,2,6); (3,6,2); (6,3,2);(6,2,3) 

Kết luận: 
Có 28 nghiệm ở trường hợp đầu tiên và 10 nghiệm ở trường hợp thứ hai tổng cộng là.... 38 nghiệm! 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... 
Một bài toán tưởng chừng như rất đơn giản nhưng lại có số nghiệm nguyên không nhỏ (đấy là còn giới hạn các nghiệm nguyên từ 0 → 9 đấy nhé) ^.^! 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... 
Bạn a01 thử nghĩ lại xem. Nếu đề cho ab, bc, ac, abc là các số có 2 và 3 chữ số thì như bạn tính thấy có quá đơn giản không? 
Khi đó a = b = c = 0 thì còn gọi gì là số có 2 chữ số, số có 3 chữ số nữa... 
Nếu đề như trên, bạn bảo là "không cần giải cũng biết bài này có quá nhiều nghiệm" có buồn cười không? 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... 
Tất nhiên là 0 hay 00 hay 000 đều là 0 và nó có nghĩa. Mình không bảo viết thế là sai. Nhưng nó có nghĩa thì chưa chắc nó đã hợp lý đâu. Được rồi cứ coi như bạn đoán đúng ý chủ đề đi. 
Nhưng nếu đề là a.b.c thì sao? Mục đích là phải giải ra nghiệm. Chứ cứ ngồi đấy mà nói là có "quá nhiều nghiệm" thì cho bài để "ước lượng" nghiệm hay sao? 
Bạn cho là biến đổi lằng nhằng. Vậy bạn hãy chỉ ra cách khác bớt lằng nhằng hơn để mình được mở rộng tầm mắt nhé! Có rất nhiều rất nhiều bài nhìn thì thấy có vẻ đơn giản nhưng khi bắt tay vào làm mới thấy đc sự logic, đôi khi chỉ là cách lập luận, trình bày còn khó hơn nhiều bài khác đấy! 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... 
Ý mình là bạn đưa ra cách giải nếu đề là " a.b + b.c + a.c = a.b.c với a,b,c là các chữ số" mà? Chứ nếu không giới hạn 3 biến a,b,c thì nói làm gì. 
Không có đk của 3 biến (a,b,c € R) thì quá đơn giản: 
a = b = 0; c € R 
hoặc c = ab/[ab - (a + b)] (với a,b ╪ 0; a,b tùy ý thuộc R) 
(chứ không phải tập nghiệm chỉ là c = ab/[ab - (a + b)]; a = b = 0 thì cái tập này vô lý rồi!) 

Trong toán học, 1 + 1 = 2 nếu cùng một đơn vị tính. Còn nếu không cùng đvt thì 1 + 1 có thể bằng 1,3,8,61....

goo hye sun
Xem chi tiết
Nguyễn Đình Toàn
24 tháng 11 2017 lúc 21:04

ab + bc + ca = abc . 

19 + 98 + 81 = 198 . 

Vậy a = 1 ; b = 9 ; c = 8 . 

Nguyễn Phụ Thắng
24 tháng 11 2017 lúc 21:05

Thay a=0,b=0,c=0 là xong mà

=) 00+00+00=000

Thanh Tùng DZ
24 tháng 11 2017 lúc 21:07

Ta có : ab + bc + ca = abc 

hay ab + bc + ca = a00 + bc

\(\Rightarrow\)ab + ca = a00

vì ab và ca là các số có 2 chữ số nên tổng của chúng không quá 200 nên a = 1

b + a tận cùng là 0 nên suy ra b = 9

c + a + nhớ 1 tận cùng bằng 0 nên suy ra c = 8

Nguyễn Thế Anh
Xem chi tiết
Trần Minh Hoàng
18 tháng 9 2017 lúc 17:28

Câu 1:

ab + bc + ca = abc 

\(\Rightarrow\)11a + 11b + 11c = 100a + 10b + c

\(\Rightarrow\)b + 10c = 89a

Mà b + 10c < 99 nên a = 1

\(\Rightarrow\)bc = 89

Vậy a = 1, b = 8, c = 9

Trần Minh Hoàng
18 tháng 9 2017 lúc 17:31

ab . cdc = abab 

\(\Rightarrow\)cdc = abab : ab 

\(\Rightarrow\)cdc = 101ab : ab 

\(\Rightarrow\)cdc = 101

Vậy c = 1, d = 0. Vì a và b không có điều kiện để tìm nên 0 < a < 9, b < 9.

Nguyễn Hải Đăng
Xem chi tiết
Trương Thị Minh Tú
25 tháng 6 2015 lúc 8:23

a) 
(10a+b)+(10b+c)+(10c+a)=100a+10b+c 
b+10c = 89a 
b=89a-10c 
a=1 <=> b=89-10c 
c=8 <=> b=9 
<=> a=1; b=9; c=8 

Đáp số: 
19+98+81 = 198 

b) 
(100a+10b+c)+(10a+b)+a = 874 
111a+11b+c = 874 
a=7 <=> 777+11b+c = 874 
11b+c = 97 
b=8 
c=97-88 = 9 
<=> a=7; b=8; c=9 

Đáp số: 
789+78+7 = 874 

Nguyễn Hùng
25 tháng 6 2015 lúc 8:24

a) 
(10a+b)+(10b+c)+(10c+a)=100a+10b+c 
b+10c = 89a 
b=89a-10c 
a=1 <=> b=89-10c 
c=8 <=> b=9 
<=> a=1; b=9; c=8 

Đáp số: 
19+98+81 = 198 

b) 
(100a+10b+c)+(10a+b)+a = 874 
111a+11b+c = 874 
a=7 <=> 777+11b+c = 874 
11b+c = 97 
b=8 
c=97-88 = 9 
<=> a=7; b=8; c=9 

Đáp số: 
789+78+7 = 874 

0o0 Lạnh_ Lùng_Là_Vậy 0o...
2 tháng 8 2017 lúc 16:09

a) ( 10a + b ) + ( 10b + c ) + ( 10c + a ) = 100a + 10b + c 

b + 10c = 89a . Suy ra b = 89a - 10c 

a = 1 \(\Leftrightarrow\)b = 89 - 10c 

c = 8 \(\Leftrightarrow\)b = 9

\(\Leftrightarrow\)a = 1 , b = 9 , c = 8 

Vậy ta có : 19 + 98 + 81 = 198 

b) ( 100a + 10b + c ) + ( 10a + b ) + a = 874

111a + 11b + c = 874

a = 7 \(\Leftrightarrow\)777 + 11b + c = 874

11b + c = 97 . Suy ra b = 8

c = 97 - 88 = 9 

\(\Leftrightarrow\)a = 7 , b = 8 , c = 9

Vậy ta có : 789 + 78 + 7 = 874 

Đặng Nhật Minh
Xem chi tiết
soyeon_Tiểu bàng giải
31 tháng 10 2016 lúc 21:41

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}\)

                                                                  \(=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\hept{\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)=> a = b = c (đpcm)

Xem chi tiết
Trần Minh Hoàng
30 tháng 9 2018 lúc 15:38

\(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)

\(\Rightarrow10a+b+10b+c+10c+a=100a+10b+c\)

\(\Rightarrow11a+11b+11c=100a+10b+c\)

\(\Rightarrow89a=b+10c\)

\(\Rightarrow89a=\overline{cb}\)

Vì \(10\le\overline{cb}\le99\) nên a = 1 \(\Rightarrow\overline{cb}=89\) hay c = 8, b = 9.

Vậy, a = 1, b = 9, c = 8.

dang  nhat minh
Xem chi tiết
soyeon_Tiểubàng giải
31 tháng 10 2016 lúc 21:33

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)

=> a = b = c (đpcm)

Nguyễn Thị Phương Anh
Xem chi tiết