cho\(\frac{a}{2013}\) =\(\frac{b}{2014}\)=\(\frac{c}{2015}\). CMR: 4(a-b)(b-c)=\(\text{(c-a)}^2\)
Cho \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}\). Chứng minh 4(a-b)(b-c)=(c-a)2
Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\) => a=2013k; b=2014k; c=2015k
Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)
= 4(-k)(-k) = 4k2 (1)
Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)
Cho \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}\). Chứng minh 4(a-b)(b-c)=(c-a)2
Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)
= 4(-k)(-k) = 4k2 (1)
Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)
Các bạn k cần trả lời nữa! Thông cảm nha!
Cho A= \(\frac{4+\frac{4}{2012}-\frac{4}{2013}+\frac{4}{2014}-\frac{4}{2015}}{\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}+7}\)
Và B= \(\frac{1+2+2^2+...+2^{2013}}{2^{2015}-2}\)
Tính A - B
p/S: LM ƠN GIÚP TỚ VS :
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)
Bài 1:
Tìm 2 SN dương a và b nhỏ nhất để các biểu thức sau là PSTG.
\(\frac{2}{a^2+b^2+98};\frac{3}{a^2+b^2+99};\frac{4}{a^2+b^2+100};...;\frac{100}{a^2+b^2+196}\)
Bài 2:
a,Tìm \(x\in Z\)
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right).x+2013=\frac{2014}{1}+\frac{2015}{1}+\frac{2016}{1}+...+\frac{4025}{2012}+\frac{4026}{2013}\)
b, Cho A=1+2!+3!+4!+5!+...+2013!+2014!. Hỏi A có là số chính phương không.
Bài 3:
CMR: \(A=\frac{1}{2}.\left(7^{2016^{2019}}-3^{8^{2018}}\right)\)chia hết cho 5
Các bạn làm được bài nào thì làm giúp mình nha.
Bài 3:
Dễ thấy 20162019 \(⋮\) 4; 82018 \(⋮\) 4. Đặt 20162019 = 4k; 82018 = 4h \(\left(k,h\in N\right)\).
Ta có: \(2A=7^{4k}-3^{4h}=2401^k-81^h=...1-\left(...1\right)=...0\)
Từ đó 2A chia hết cho 5.
Mà A là số tự nhiên và (2; 5) = 1 nên A chia hết cho 5.
Bài 1: Bạn coi lại đề bài nhé!
Bài 2:
a) Lại sai tiếp?
b) A = 1 + 2 + 6 + 24 + (5! + 6! + ... + 2014!)
= 33 + (5! + 6! + ... + 2014!)
Ta thấy các 5!; 6!; ...; 2014! đều có tận cùng bằng 0, còn 33 tận cùng bằng 3. Do đó A tận cùng bằng 3.
Vậy A không là số chính phương.
Cho ba số thực a, b và c thỏa mãn \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}.\)
CMR: 4(a-b)(b-c)= (c-a)2
Cho a,b,c thỏa mãn: \(\frac{a}{2014}\)=\(\frac{b}{2015}\)=\(\frac{c}{2016}\)
CMR: 4 ( a - b ) ( b - c ) =\(\left(c-a\right)^2\)
tích mình đi
ai tích mình
mình tích lại
thanks
Câu hỏi của Đỗ Thanh Uyên - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
Tham khảo tại đây:
https://olm.vn/hoi-dap/detail/82751756566.html
* Ầy mk quên nếu bn ko coppy được ý thì vào câu hỏi tương tự thấy chỗ bn Đỗ Thanh Uyên ý bấm vào đó tham khảo
Cho các số nguyên a;b;c thỏa mãn :
\(\frac{2014.a^2+b^2+c^2}{a^2}=\frac{a^2+2014.b^2+c^2}{b^2}=\frac{a^2+b^2+2014.c^2}{c^2}\)
Tính giá trị biểu thức : P=\(\frac{2015.a^2+b^2}{c^2}+\frac{2015.b^2+c^2}{a^2}+\frac{2015.c^2+a^2}{b^2}\)
Tính: A= \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Bài 2: Cho \(\frac{a}{b}< \frac{c}{d}\) và b;d>0
Chứng Minh: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Bài 2)
Ta có \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
1. Cho 1 < a < b + c < a + 1 và b < c . CMR : b < a
2. Một phép chia có SBC được viết bởi 2013 chữ số 7, số chia là 15, Tìm phần thập phân của thương.
3. So sánh :
a. \(A=-\frac{1}{2014}-\frac{3}{11^2}-\frac{5}{11^3}-\frac{7}{11^4}\) và \(B=-\frac{1}{2014}-\frac{7}{11^2}-\frac{5}{11^3}-\frac{3}{11^4}\)
b. \(C=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\) và \(D=-\frac{1}{2010\times2011}-\frac{1}{2012\times2013}\)