Tìm tất cả số nguyên tố p,q,r thỏa mãn: (p^2+2p)(q^2+2q)(r^2+2r) là số chính phương
Tìm tất cả các số nguyên dương x,y và các số nguyên tố p thỏa mãn : x^2+p^2q^2=6(x+2p)
Tìm tất cả các số nguyên tố p, q, r thỏa mãn:
(p + 1)(q + 2)(r + 3) = 4pqr
Tìm các số nguyên tố p,q,r thỏa mãn p2+q2+r2=6p+4q+2r
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
giải
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
Ta co 2 trường hợp:TH1: p chẵn; r; q lẻ
TH2:p; r; q lẻ
TH1: p chẵn; r; q lẻ
Suy ra p2 chẵn; r2 và q2 lẻ
\(\Rightarrow\)p2+q2+r2 lẻ
mà 6p+4q+2r chẵn
\(\Rightarrow\)mâu thuẫn (1)
TH2:p; r; q lẻ
\(\Rightarrow\)p2+q2+r2 lẻ
mà 6p+4q+2r chẵn
\(\Rightarrow\)mâu thuẫn(2)
Từ (1) và (2)
Suy ra r; p; q không có giá trị thỏa mãn
Tìm các số nguyên tố p,q,r thỏa mãn: pq-2r2 =4
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
1.Tìm tất cả các cặp số tự nhiên (x;y) thỏa mãn phương trình: \(\left(x+1\right)^4-\left(x-1\right)^4=y^3\)
2. Tìm tất cả các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
tìm các số nguyên tố p;q;r thỏa mãn p^q+p^r là số chính phương.Giúp mình nhanh nhé mn
Tìm tất cả các số nguyên tố : p,q,r thỏa mãn p4+q4=r4
Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.
Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p
\(\Rightarrow\)Chắc chắn r là số lẻ.
\(\Rightarrow\)p hoặc q là số chẵn.
Giả sử p chẵn \(\Rightarrow\)p = 2.
Ta có:\(16+q^4=r^4\)
\(\Leftrightarrow r^4-q^4=16\)
\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)
\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)
Ta lại có: \(r^2-q^2< r^2+q^2\)
\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)
Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Bài 4:
Ta đặt: \(S=6^m+2^n+2\)
TH1: n chẵn thì:
\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)
Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)
Đồng thời S là scp
Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)
\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)
Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ
Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)
Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)
Thế vào ban đầu: \(S=8+2^n=36k^2\)
Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)
\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)
\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)
Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))
Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)
TH2: n là số lẻ
\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)
\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn
\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ
Chia tiếp thành 2TH nhỏ:
TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ
Ta thu đc: m=1 và thế vào ban đầu
\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)
\(\Leftrightarrow2^{n-2}+2=k^2\)
Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)
Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)
\(\Leftrightarrow2^{n-3}+1=2t^2\)
\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3
Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)
TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ
Suy ra: n=1
Thế vào trên: \(6^m+4=4k^2\)
\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)
Và \(6^p-6^q=4\)
\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)
\(\Rightarrow k\notin Z\)
Vậy \(\left(m;n\right)=\left(1;3\right)\)
P/S: mk không kiểm lại nên có thể sai