Cho F = 63! - 61! CMR F chia hết cho 71
cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR f(12) chia hết cho 35
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%B3+ba+g%C3%B3c+nh%E1%BB%8Dn+trung+tuy%E1%BA%BFn+AM+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+ch%E1%BB%A9ng+%C4%91i%E1%BB%83m+C+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AB+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AE++vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB+v%C3%A0+AE=AB+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+b%E1%BB%9D+ch%E1%BB%A9a+%C4%91i%E1%BB%83m+B+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AC+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AD+vunng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+AD+=Ac+a)+c/m+BD=CEb)+tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+MA+l%E1%BA%A5y+N+sao+cho+MN=MA.C/m+tam+gi%C3%A1c+ADE=tam+gi%C3%A1c+CANc)+g%E1%BB%8Di+I+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+DE+v%C3%A0+AM+c/m+(AD%5E2+IE%5E2)/DI%5E2+AE%5E2&id=412461
cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR f(12) chia hết cho 35
Đặt đa thức \(f\left(x\right)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_k\)(trong đó \(n\ge2\)và \(a_k\)là hệ số tự do)
\(\Rightarrow f\left(5\right)=a_0.5^n+a_1.5^{n-1}+a_2.5^{n-2}+...+a_k\)
Dễ thấy 5 là số nguyên tố nên các lũy thừa bậc n; n - 1; n - 2;... của 5 không chia hết cho 7.
Vậy để \(f\left(5\right)⋮7\)thì tất cả các hệ số chia hết cho 7 hay \(a_0;a_1;a_2;...;a_k⋮7\)(1)
Tương tự với \(f\left(7\right)⋮5\)ta có \(a_0;a_1;a_2;...;a_k⋮5\)(2)
Vì (5,7) = 1 nên từ (1) và (2) suy ra \(a_0;a_1;a_2;...;a_k⋮35\)
Lúc đó f(x) chia hết cho 35 với mọi x
Vậy f(12) chia hết cho 35 (đpcm)
Cho F = 3 + 32 + ... + 3100 . CMR: F chia hết cho 4, F chia hết cho 100
Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Cho đa thức f|(x)=ax2-bx+c với a,b,c là các số nguyên và a khac 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9. CMR: f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Cho đa thức f(x)=ax2-bx+c với a,b,c là các số nguyên dương và a khác 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9.CMR f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
cho f(x) = ax2 + bx + c với a,b,c thuộc Z biết f(-1) , f(0) , f(1) chia hết cho 3 CMR a,b,c chia hết cho 3
Cho đa thức f(x) với hệ số nguyên. Cho biết f(5)=18, f(6)=50. CMR: f(11) chia hết cho 30
Cho f(x) là 1 đa thức bậc 3.
CMR: f(x) chia hết cho 3 <=> các hệ số của f(x) chia hết cho 3.
Giúp cho mình nhé!