cmr ko tồn tại số hữu tỉ x nào thỏa mãn x^2 = 2013
giúp zùm mik đi:
cmr ko tồn tại số hữu tỉ x nào thỏa mãn x^2 = 2013
căn bặc 2 của 2013 là
số thập phân vô hạn tuần hoàn
nên ko có số hữu tỉ nào mũ 2 bằng 2013
ok
CMR không tồn tại 2 số hữu tỉ x và y trái dấu,ko đối nhau thỏa mãn đẳng thức 1/x+y=1/x+1/y
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
CMR không tồn tại số hữu tỉ x thỏa mãn
a. x^2=2
b. x^2=5
c. x^2=7
A, Ta thấy:
Vt dạng tổng quát: a.a \(\ne2\), và ko số nào có bình phương = 2
b , x^2 = 5 ( ko thể tòn tại) vì bình phương của 1 số chỉ có tận cùng chẵn hoặc số chẵn
c, tương tự : x^2= 7 ( ko thể tồn tại) vì bình phương của 1 số chỉ có tận cùng chẵn hoặc số chẵn
cho x,y,z là các số thực thỏa mãn x^2 + y^2 + z^2 =1.
a, Tim min và max của xy + yz - xz
b,CMR ko tồn tại bộ số hữu tỉ (x,y,z) để đạt được giá trị lớn nhất và nhỏ nhất của xy+yz-xz
chứng minh rằng ko tồn tại 2 số hữu tỉ x và y trái dấu không đối nhau để thỏa mãn đẳng thức 1/x-y=1/x+1/y
Cm: ko tồn tại 3 số hữu tỉ x,y,z thỏa mãn x.y=13/15, y.z=11/3, z.x= -3/13 ?
y.y=13/15
=>x và y cùng dấu(1)
y.z=11/3
=>y và z cũng cùng dấu(2)
Mà z.x=-3/11
=> x và z lại trái dấu(3)
Từ (1),(2) và (3) => 3 số x,y,z k tồn tại
Vay x,y,z khong ton tai
CMR không tồn tại 3 số hữu tỉ x;y;z nào thỏa mãn
\(xy=\frac{13}{15};yz=\frac{1}{3};zx=-\frac{3}{13}\)
P/S: mk là kudo shinichi CTV. Câu hỏi trên là để mk giúp 1 b chứ ko phải kiếm điểm.
Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)
\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)
\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)
Thay x vào z ta có:
\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)
\(z=-\frac{45y}{169}\)
Thay y vào z ta có:
\(z=\frac{-45.\frac{1}{3}z}{169}\)
\(z=-\frac{15}{169}z\)( vô lý )
\(\Rightarrow\)z không có giá trị
\(\Rightarrow\)x;y không có giá trị
đpcm
Giải :
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = 13/15 .11/3 . ( - 3/13 )
\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )
Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)
Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài
tích mình đi
ai tích mình
mình tích lại
thanks
CM: ko tồn tại 3 số hữu tỉ x;y;z thỏa mãn x.y=13/15 y.z= 11/3 z.x = -3/13
x.y=13/15
=>x và y cùng dấu(1)
y.z=11/3
=>y và z cũng cùng dấu(2)
Mà z.x=-3/11
=> x và z lại trái dấu(3)
Từ (1),(2) và (3) => 3 số x,y,z k tồn tại
Cmr: tồn tại hay không số hữu tỉ x,y thoả mãn: \(x^2+y^2=3\)