Số các số tự nhiên thỏa mãn . N là......
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
tìm tất cả các số tự nhiên n để 4n - 1 chia hết cho 7 . các số tự nhiên n thỏa mãn có dạng là?
Để 4n - 1 chai hết cho 7
Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}
Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}
Tìm số tự nhiên n thỏa mãn : \(4^{n+3}+17.2^{2n}=9^{n+1}+7.3^{2n}\)
Tập hợp các số tự nhiên n thỏa mãn là {...}
(nếu có nhiều phần tử , nhập theo thứ tự tăng dần , cách nhau bởi dấu ";")
Ta có
\(\frac{4^{n+3}+17.2^{2n}}{9^{n+1}+7.3^{2n}}=\frac{2^{2n+6}+17.2^{2n}}{3^{2n+2}+7.3^{2n}}=\frac{2^{2n}.\left(2^6+17\right)}{3^{2n}.\left(3^2+7\right)}=\left(\frac{2}{3}\right)^{2n}.\frac{81}{16}=1\)
\(\Rightarrow\left(\frac{2}{3}\right)^{2n}.\frac{3^4}{2^4}=1\Rightarrow\left(\frac{2}{3}\right)^{2n}=\left(\frac{2}{3}\right)^4\Rightarrow2n=4\Rightarrow n=2\)
Tìm tất cả các số tự nhiên n thỏa mãn 9n2+3n+4 là số chính phương
Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.
1) Số cặp số <x;y> thỏa mãn :(2x+3)(4y+6)=111
2) số các giá trị tự nhiên của n để n+6/15 và n+5/18 đồng thời là các số tự nhiên là ?
2) Để n + 6/15 là số tự nhiên thì n + 6 chia hết cho 15 => n + 6 chia hết cho 3 (1)
Để n + 5/18 là số tự nhiên thì n + 5 chia hết cho 18 => n + 5 chia hết cho 3 (2)
Từ (1) và (2) => (n + 6) - (n + 5) chia hết cho 3
=> 1 chia hết cho 3 (vô lý !)
Vậy không tồn tại n để n + 6/15 và n + 5/18 đồng thời là các số tự nhiên
Tất cả các số tự nhiên n thỏa mãn (n + 13) chia hết cho (n - 2) là những số nào ?
Tất cả các số tự nhiên n thỏa mãn 8 chia hết cho (n + 2) là những số nào ?
Tổng bình phương các số tự nhiên n thỏa mãn 1 ≤ n < 7 là...
Tất cả các số tự nhiên thỏa mãn (n+13) chia hết (n-2) là ?
Ta có :
(n+13) : (n-2)
= (n - 2 + 15) : (n-2)
= (n-2) : (n-2) + 15 : (n-2)
= 1 + 15 : (n - 2) (1)
Để n + 13 chia hết cho (n-2) thì (1) phải thuộc Z, 1 luôn là số nguyên, 15 : (n - 2) là nguyên khi n - 2 thuộc Ư(15)
Mà: Ư(15) = {1;3;5;15}
. n - 2 = 1
=>n = 1 + 2 = 3
n - 2 = 3
=>n = 3 + 2 = 5
n - 2 = 5
=>n = 5 + 2 = 7
n - 2 = 15
=>n = 15 + 2 = 17
Vậy khi n \(\in\) {3;5;7;17} thì (n + 13) chia hết (n - 2)
TẬp hợp các số tự nhiên n thỏa mãn 3n+10: hết n-1 là
3n+10 chia hết n-1
=> 3n-3+13 chia hết n-1
=> 3.(n-1)+13 chia hết n-1
Mà 3(n-1) chia hết n-1
=> 13 chia hết n-1
=> n-1 \(\in\)Ư(13)={1; 13}
=> n \(\in\){2; 14}