Chứng tỏ rằng số 21n+4/7n (với n thuộc Z) không thể viết được dưới dạng số thập phân hữu hạn.
Chứng tỏ rằng: \(\frac{21n+4}{7n}\)không thể viết được dưới dạng số thập phân hữu hạn.
*Chứng minh rằng : 21n + 4 / 7n không thể viết được dưới dạng số thập phân hữu hạn.
Chứng tỏ rằng : \(\frac{21n+4}{7n}\) không thể viết đc dưới dạng số thập phân hữa hạn
Chứng tỏ rằng \(\frac{21n+7}{3n}\) không thể viết được dưới dạng số thập phân hữu hạn
Ta có:
\(\frac{21n+7}{3n}=\frac{21n}{3n}+\frac{7}{3n}=7+\frac{7}{3n}\)
Giả sử \(\frac{21n+7}{3n}\) được viết dưới dạng số thập phân hữu hạn thì \(\frac{7}{3n}\) cũng được viết dưới dạng số thập phân hữu hạn
Ta đã biết 1 số hữu tỉ có thể viết dưới dạng số thập phân hữu hạn khi và chỉ khi mẫu của nó chỉ có ước là 2 hoặc 5 nên để \(\frac{7}{3n}\) được viết dưới dạng số thập phân hữu hạn thì 7 chia hết cho 3 và n chia hết cho 2 hoặc 5, vô lý vì 7 không chia hết cho 3
=> điều giả sử là sai
Chứng tỏ \(\frac{21n+7}{3n}\) không thể viết được dưới dạng số thập phân hữu hạn
Chứng tỏ rằng phân số sau không thể viết được dưới dạng số thập phân 7n+5/ 21n
Cho phân số 7n^2+21n/56 ( n thuộc N* ). Viết dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn? Vì sao?
Cho n thuộc N*.Chứng tỏ rằng phân số\(\frac{12n+5}{3n}\)không thể viết được dưới dạng số thập phân hữa hạn.
Vì có có 3 ở mẫu số , không thuộc 2 thừa số nguyên tố 2 và 5 nên không viết đc dưới dạng số thập phân hữu hạn
\(\frac{12n+5}{3n}\)
Ta có: \(3n\in B\left(3\right)\left(n\inℕ^∗\right)\)
Suy ra 3n chia hết cho 3 hay n có ước nguyên tố 3
\(\Rightarrowđpcm\)
NẾU n LÀ SỐ TỰ NHIÊN KHÁC KHÔNG THÌ VIẾT CÁC PHÂN SỐ SAU DƯỚI DẠNG SỐ THẬP PHÂN THÌ SẼ ĐƯỢC SỐ THẬP PHÂN HỮU HẠN HAY VÔ HẠN TUẦN HOÀN ? VÌ SAO?
a, 7n^2+21n/56n
b,83!+1/1328n
MONG CÁC BẠN GIÚP
chứng tỏ các phân số sau không thể viết dưới dạng phân số thập phân 3n+5 trên 21n(với n€N*)
Vì 3n + 5 chia 3 dư 2 nên khi chia cho 21n ( chia hết cho 3 ) sẽ có dạng là a,00...066...6