Cho x,y>0 thỏa mãn \(^{x^2+y^2}\)=20
Giá trị nhỏ nhất của biểu thức P=\(\frac{1}{x^2}+\frac{1}{y^2}\)là
Cho x, y là các số thực khác 0 thỏa mãn: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A= 2016+ xy
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{x}=0\\x+\frac{y}{2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1\\x=-\frac{y}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\left(h\right)\hept{\begin{cases}x=-1\\y=2\end{cases}}\)OK ???
Chox;y>0 thỏa mãn x+y=<1 . Giá trị nhỏ nhất của biểu thức\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\) là
cho x,y>0 thỏa mãn \(x+y\le1\). Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)
Cho x,y,z là ba số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Áp dụng bất đẳng thức Cauchy
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)
\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)
Áp dụng BĐT Cauchy - Schwarz :
\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT Cauchy schwarz ta có:
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)
\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)
Đẳng thức xảy ra tại x=y=z=1/3
Cho hai số dương x, y thỏa mãn x + y = 2. Tính giá trị nhỏ nhất của biểu thức
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}.\)
Nhận xét :
x2 lớn hơn 0 ( với mọi x dương )
y2 lớn hơn 0 ( với mọi y dương )
Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2 và y2 max
Nhưng x + y = 2
=> x = y = 1
A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\)
Vậy A min = 5 <=> x = y = 1
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2
AM-GM => x + y >= \(2\sqrt{xy}\)
=> \(2\sqrt{xy}\)<= 2
=> xy <= 1
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)
=> A >= 1/xy + 3/xy
=> A >= 4/xy
mà xy <= 1
=> A >= 4/1
=> A>= 4
dấu bằng sảy ra khi x = y = 2/2 = 1
Vậy GTNN của A là 4 khi x = y = 1
Nhầm 1/x^2 + 1/y^2 >= 2/xy
=> A >= 5
khi x = y = 1 nhé
Bài 1:Cho 1. Cho x, y, z dương thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức
\(P=2\left(x^2+y^2+z^2\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bài 2:Cho hai số dương x, y thỏa mãn \(x+y\le2\) . Tìm giá trị nhỏ nhất của
\(C=\frac{1}{x^2+y^2}+\frac{7}{xy}+xy\)
Các bạn giải cho mình 1 bài là được rồi mà giải được cả 2 thì càng tốt
Giờ bạn cần bài này nữa không
1. Đặt A = x2+y2+z2
B = xy+yz+xz
C = 1/x + 1/y + 1/z
Lại có (x+y+z)2=9
A + 2B = 9
Dễ chứng minh A>=B
Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)
Vì x+y+z=3 => (x+y+z) /3 =1
C = (x+y+z) /3x + (x+y+x) /3y + (x+y+z)/3z
C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x)
Áp dụng bất đẳng thức (a/b+b/a) >=2
=> C >=3 ( khi và chỉ khi x=y=z=1)
P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1
Vậy ...........
Câu 2 chưa ra thông cảm
cho x và y là các số dương thỏa mãn x+y=2. tìm giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}\)
chắc là 87,556
duyệt nhanh diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
là 87,556 đó
duyệt diiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
87,556 duyệt nhanh điiiiiiiiiiiiiiiiiiiiiiiiiiiiii bạn
Cho x, y là các số thực dương thỏa mãn x+y =1. Tìm giá trị nhỏ nhất của biểu thức:
P= \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\)
Áp dụng bất đẳng thức : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) . Dấu "=" xảy ra khi a = b
Được : \(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=2xy\\x+y=1\end{cases}}\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(P=4\Leftrightarrow x=y=\frac{1}{2}\)
Cho x>0, y>0 thỏa mãn x2+y2=1. Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{-2xy}{1+xy}\)
Cho x>0, y>0 và thỏa mãn điều kiện \(x+y\le1\). Tìm giá trị nhỏ nhất của biểu thức K=\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)