tìm nghiệm nguyên của pt :
x\(^{x^2+2y^2+3xy-2x-4y+3=0}\)
giúp mik với
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
tìm nghiệm nguyên của pt : x^2 -y^2+2x-4y-10=0, giúp mik vs ạ , mik đang cần gấp
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
tìm nghiệm nguyên dương của phương trình :\(x^2+2y^2-3xy+2x-4y+3=0\)
tìm nghiệm nguyên của phương trình: \(x^2+2y^2+3xy-2x-4y+3=0\)
<=> x2 + (3y - 2)x + (2y2 - 4y + 3) = 0 (1)
Coi (1) là phương trình bậc 2 ẩn x
\(\Delta\) = (3y - 2)2 - 4 (2y2 - 4y + 3) = 9y2 - 12y + 4 - 8y2 + 16y - 12 = y2 + 4y - 8
Để (1) có nghiệm x; y nguyên <=> \(\Delta\) là số chính phương
<=> y2 + 4y - 8 = k2 (k nguyên)
<=> y2 + 4y + 4 - k2 = 12
<=> (y +2)2 - k2 = 12 <=> (y + 2 + k).(y + 2 - k) = 12
=> (y + 2 + k) \(\in\) Ư(12) = {12;-12;3;-3;4;-4;6;-6;2;-2;1;-1}
y+2+k | 12 | -12 | 1 | -1 | 3 | -3 | 4 | -4 | 2 | -2 | 6 | -6 |
y+2-k | 1 | -1 | 12 | -12 | 4 | -4 | 3 | -3 | 6 | -6 | 2 | -2 |
k | 13/2 (L) | -11/2 (L) | -11/2 (L) | 11/2(L) | -1/2(L) | 1/2(L) | 1/2(L) | -1/2(L) | -2 | 2 | 2 | -2 |
y | 2 | -6 | 2 | -6 |
Vậy y = -6 hoặc y = 2
Thay y = -6 vào (1) => x2 -20x + 99 = 0 <=> x = 11 hoặc x = 9
Thay y = 2 vào (1) => x2 + 4x + 3 = 0 <=> x = -1 hoặc x = -3
Vậy ...
Nhân 4 vào pt trên ta được 4x2+8y2+12xy-8x-16y+12=0
tương đương 4x2+9y2+4+12xy-8x-12y-y2-4y+8=0
(2x+3y-2)2 -(y+2)2 = -12
(x+y-2)(x+2y)=-3
Ta có các hệ pt :x+y-2=3 ; x+2y=-1x+2y-2= -3 ; x+2y =1.giải hệ rồi suy ra nghiệm (x,y)=(-3,2);(11,-6)
CÁc bn ấy làm chuẩn rồi
x = 3
k cho mk nha
Tìm nghiệm nguyên của PT: \(x^2+2y^2+3xy-x-y+3=0\)
\(x^2+2y^2+3xy-x-y+3=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y-1\right)=-3\)
\(\left\{{}\begin{matrix}x^3-3xy^2-2y^3=0\\3xy+2x-4y=6\end{matrix}\right.\)giải hệ pt sau
Giải phương trình ( có câu vô nghiệm)
a, x^2 + 4y^2 + 4xy =0
b,2y^4 - 9y^3+ 2y^2 - 9y=0
c,27x^3 - 27x^y + 3xy^2-y^3=0
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
tìm nghiệm nguyên củ pt :
x2 + 2y2 + 3xy - x - y + 3 = 0
x2 + 2y2 +3xy - x - y + 3 = 0
(x2 - y2) + (3y2 + 3xy) - (x + y) = -3
(x - y)(x + y) + 3y(x + y) - (x + y) = -3
(x + y)(x + 2y -1) = -3 = 1.(-3) = (-1).3
(x;y)=(4;-3) (-6;5)
Tìm (x, y) nguyên dương thõa mãn: \(x^2+2y^2-3xy+2x-4y+3=0\)