tìm số tự nhiên a và b chia cho m có cùng 1 số dư a >= b chứng minh rằng ( a - b ) chia hết cho m
tìm số tự nhiên a và b chia cho m có cùng 1 số dư a >= b chứng minh rằng ( a - b ) chia hết cho m
Hai số tự nhiên a và b chia cho m có cùng một số dư , a > hoặc = b . chứng minh rằng a-b chia hết cho m
MÌNH GIÚP BẠN NÈ
Nếu a mà lớn hơn b hoặc bằng b thì a là số bị chia b là số chia
Theo dấu hiệu chia hết thì nếu a chia hết cho m , b chia hết cho m thì , [a-b] hoặc [a+b] đều chia hết cho m
Nhưng theo công thức [a-b]:m là phải có 2 số cùng chia hết cho m
Nhưng đây lại có 2 số a và b cùng không chia hết cho m nên ta cũng không thể biết chính xác là a-b có thể chia hết cho m hay không
Nên a-b có khả năng chia hết cho m mà cũng không có khả năng vì không có con số chính xác để tính được
Nên a-b có khả năng chia hết cho m
chứng minh rằng
nếu hai số tự nhiên a và b (a>b ) khi chia cho số tự nhiên m có cùng số dư thì hiệu a - b chia hết cho m
Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
2 số tự nhiên a và b khi chia cho m có cùng số dư (a > b ). Chứng minh rằng a-b chia hết cho m.
Ai nhanh mình sẽ tick cho nha !
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n b=m.h+n
=>a‐b=m.k+n‐﴾m.h+n﴿
=m.k+n‐m.h‐n
=﴾m.k‐m.h﴿+﴾n‐n﴿
=m.﴾k‐h﴿ chia hết cho m
=>a‐b chia hết cho m
=>ĐPCM
Hai số tự nhiên a và b chia cho m có cùng một số dư, a > hoặc = b. Chứng tỏ rằng a-b chia hết cho m
Cho 2 số tự nhiên a và b. Khi chia a, b cho cùng số 2 thì cùng có số dư là 1. Chứng minh rằng : ( a - b ) chia hết cho 2
a và b chia cho 2 có cùng số dư là 1 nên a = 2m + 1 ; b = 2n + 1 (m,n thuộc N)
Ta có :
a - b = (2m + 1) - (2n + 1) = 2m - 2n = 2.(m - n) chia hết cho 2
A ,chứng minh rằng nếu hai số tự nhiên cùng chia cho 5 và có cùng số dư thì hiệu của chúng chia hết cho 5
B,cho 2 số tự nhiên a và b ko chia hết cho 3 khi chia a avf b cho 3 thì có 2 số dư khác nhau chứng minh rằng ( a +b )chia hết cho 3
mik cần rất rất là gấp mong các bạn giúp mik tik
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
2 số tự nhiên a và b chia cho M có cùng một số dư, a lớn hơn hoặc bằng b. chứng tỏ rằng a-b chia hết cho M
Gọi a=nM+d và b=eM+d (n,e E N và n>e)
a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)
Gọi d là số dư của a và b
Gọi k là thương của a và M
Gọi n là thương của b và M
suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M
Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M
a=M.k+r
b=M.n+r
a-b=M.k+r-(M.n-r)=M.k-M.n=M.(k-n) chia hết cho M(đpcm)